@article{ChenYanOschatzetal.2020, author = {Chen, Lu and Yan, Runyu and Oschatz, Martin and Jiang, Lei and Antonietti, Markus and Xiao, Kai}, title = {Ultrathin 2D graphitic carbon nitride on metal films}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {59}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {23}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202000314}, pages = {9067 -- 9073}, year = {2020}, abstract = {Efficient and low-cost anode materials for the sodium-ion battery are highly desired to enable more economic energy storage. Effects on an ultrathin carbon nitride film deposited on a copper metal electrode are presented. The combination of effects show an unusually high capacity to store sodium metal. The g-C3N4 film is as thin as 10 nm and can be fabricated by an efficient, facile, and general chemical-vapor deposition method. A high reversible capacity of formally up to 51 Ah g(-1) indicates that the Na is not only stored in the carbon nitride as such, but that carbon nitride activates also the metal for reversible Na-deposition, while forming at the same time an solid electrolyte interface layer avoiding direct contact of the metallic phase with the liquid electrolyte.}, language = {en} } @article{ChenSavateevPronkinetal.2017, author = {Chen, Zupeng and Savateev, Aleksandr and Pronkin, Sergey and Papaefthimiou, Vasiliki and Wolff, Christian Michael and Willinger, Marc Georg and Willinger, Elena and Neher, Dieter and Antonietti, Markus and Dontsova, Dariya}, title = {"The Easier the Better" Preparation of Efficient Photocatalysts-Metastable Poly(heptazine imide) Salts}, series = {Advanced materials}, volume = {29}, journal = {Advanced materials}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0935-9648}, doi = {10.1002/adma.201700555}, pages = {21800 -- 21806}, year = {2017}, abstract = {Cost-efficient, visible-light-driven hydrogen production from water is an attractive potential source of clean, sustainable fuel. Here, it is shown that thermal solid state reactions of traditional carbon nitride precursors (cyanamide, melamine) with NaCl, KCl, or CsCl are a cheap and straightforward way to prepare poly(heptazine imide) alkali metal salts, whose thermodynamic stability decreases upon the increase of the metal atom size. The chemical structure of the prepared salts is confirmed by the results of X-ray photoelectron and infrared spectroscopies, powder X-ray diffraction and electron microscopy studies, and, in the case of sodium poly(heptazine imide), additionally by atomic pair distribution function analysis and 2D powder X-ray diffraction pattern simulations. In contrast, reactions with LiCl yield thermodynamically stable poly(triazine imides). Owing to the metastability and high structural order, the obtained heptazine imide salts are found to be highly active photo-catalysts in Rhodamine B and 4-chlorophenol degradation, and Pt-assisted sacrificial water reduction reactions under visible light irradiation. The measured hydrogen evolution rates are up to four times higher than those provided by a benchmark photocatalyst, mesoporous graphitic carbon nitride. Moreover, the products are able to photocatalytically reduce water with considerable reaction rates, even when glycerol is used as a sacrificial hole scavenger.}, language = {en} } @article{JordanFechlerXuetal.2015, author = {Jordan, Thomas and Fechler, Nina and Xu, Jingsan and Brenner, Thomas J. K. and Antonietti, Markus and Shalom, Menny}, title = {"Caffeine Doping" of Carbon/Nitrogen-Based Organic Catalysts: Caffeine as a Supramolecular Edge Modifier for the Synthesis of Photoactive Carbon Nitride Tubes}, series = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, volume = {7}, journal = {ChemCatChem : heterogeneous \& homogeneous \& bio- \& nano-catalysis ; a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1867-3880}, doi = {10.1002/cctc.201500343}, pages = {2826 -- 2830}, year = {2015}, abstract = {An alternative method for the structure tuning of carbon nitride materials by using a supramolecular approach in combination with caffeine as lining-agent is described. The self-assembly of the precursor complex consisting of melamine and cyanuric acid can be controlled by this doping molecule in terms of morphology, electronic, and photophysical properties. Caffeine is proposed to insert as an edge-molecule eventually leading to hollow tube-like carbon nitride structures with improved efficiency of charge formation. Compared to the bulk carbon nitride, the caffeine-doped analogue possesses a higher photocatalytic activity for the degradation of rhodamineB dye. Furthermore, this approach is also shown to be suitable for the modification of carbon nitride electrodes.}, language = {en} } @article{XuBrennerChenetal.2014, author = {Xu, Jingsan and Brenner, Thomas J. K. and Chen, Zupeng and Neher, Dieter and Antonietti, Markus and Shalom, Menny}, title = {Upconversion-agent induced improvement of g-C3N4 photocatalyst under visible light}, series = {ACS applied materials \& interfaces}, volume = {6}, journal = {ACS applied materials \& interfaces}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/am5051263}, pages = {16481 -- 16486}, year = {2014}, abstract = {Herein, we report the use of upconversion agents to modify graphite carbon nitride (g-C3N4) by direct thermal condensation of a mixture of ErCl3 center dot 6H(2)O and the supramolecular precursor cyanuric acid-melamine. We show the enhancement of g-C3N4 photoactivity after Er3+ doping by monitoring the photodegradation of Rhodamine B dye under visible light. The contribution of the upconversion agent is demonstrated by measurements using only a red laser. The Er3+ doping alters both the electronic and the chemical properties of g-C3N4. The Er3+ doping reduces emission intensity and lifetime, indicating the formation of new, nonradiative deactivation pathways, probably involving charge-transfer processes.}, language = {en} }