@article{WellsPoppenhaegerWatson2019, author = {Wells, Robert and Poppenh{\"a}ger, Katja and Watson, C. A.}, title = {Validation of a temperate fourth planet in the K2-133 multiplanet system}, series = {Monthly notices of the Royal Astronomical Society}, volume = {487}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stz1334}, pages = {1865 -- 1873}, year = {2019}, abstract = {We present follow-up observations of the K2-133 multiplanet system. Previously, we announced that K2-133 contained three super-Earths orbiting an M1.5V host star - with tentative evidence of a fourth outer-planet orbiting at the edge of the temperate zone. Here, we report on the validation of the presence of the fourth planet, determining a radius of 1.73+0.14-0.13 R⊕. The four planets span the radius gap of the exoplanet population, meaning further follow-up would be worthwhile to obtain masses and test theories of the origin of the gap. In particular, the trend of increasing planetary radius with decreasing incident flux in the K2-133 system supports the claim that the gap is caused by photo-evaporation of exoplanet atmospheres. Finally, we note that K2-133 e orbits on the edge of the star's temperate zone, and that our radius measurement allows for the possibility that this is a rocky world. Additional mass measurements are required to confirm or refute this scenario.}, language = {en} }