@article{BeckerNeumannTetzneretal.2014, author = {Becker, Michael and Neumann, Marko and Tetzner, Julia and B{\"o}se, Susanne and Knoppick, Henrike and Maaz, Kai and Baumert, J{\"u}rgen and Lehmann, Rainer}, title = {Development? Effects of the transition into academically selective schools}, series = {The journal of educational psychology}, volume = {106}, journal = {The journal of educational psychology}, number = {2}, publisher = {American Psychological Association}, address = {Washington}, issn = {0022-0663}, doi = {10.1037/a0035425}, pages = {555 -- 568}, year = {2014}, abstract = {The present study investigates school context effects on psychosocial characteristics (academic self-concept, peer relations, school satisfaction, and school anxiety) of high-achieving and gifted students. Students who did or did not make an early transition from elementary to secondary schools for high-achieving and gifted students in 5th grade in Berlin, Germany, are compared in their psychosocial development. The sample comprises 155 early-entry students who moved to an academically selective secondary school (Gymnasium) and 3,169 regular students who remained in elementary school until the end of 6th grade. Overall, a complex pattern of psychosocial development emerged for all students, with both positive and negative outcomes being observed. Specifically, the transition into academically selective learning environments seemed to come at some cost for psychosocial development. Propensity score matching analysis isolating the effects of selective school intake and the school context effect itself revealed negative contextual effects of early transition to Gymnasium on academic self-concept and school anxiety; additionally, the positive trend in peer relations observed among regular students was not discernible among early-entry students.}, language = {en} } @article{WirthNeumannAntoniettietal.2014, author = {Wirth, Jonas and Neumann, Rainer and Antonietti, Markus and Saalfrank, Peter}, title = {Adsorption and photocatalytic splitting of water on graphitic carbon nitride}, series = {physical chemistry, chemical physics : PCCP}, volume = {2014}, journal = {physical chemistry, chemical physics : PCCP}, number = {16}, issn = {1463-9076}, doi = {10.1039/c4cp02021a}, pages = {15917 -- 15926}, year = {2014}, abstract = {Graphitic carbon nitride, g-C₃N₄, is a promising organic photo-catalyst for a variety of redox reactions. In order to improve its efficiency in a systematic manner, however, a fundamental understanding of the microscopic interaction between catalyst, reactants and products is crucial. Here we present a systematic study of water adsorption on g-C₃N₄ by means of density functional theory and the density functional based tight-binding method as a prerequisite for understanding photocatalytic water splitting. We then analyze this prototypical redox reaction on the basis of a thermodynamic model providing an estimate of the overpotential for both water oxidation and H⁺ reduction. While the latter is found to occur readily upon irradiation with visible light, we derive a prohibitive overpotential of 1.56 eV for the water oxidation half reaction, comparing well with the experimental finding that in contrast to H₂ production O₂ evolution is only possible in the presence of oxidation cocatalysts.}, language = {en} }