@misc{CencilNitschkeSteupetal.2014, author = {Cencil, Ugo and Nitschke, Felix and Steup, Martin and Minassian, Berge A. and Colleoni, Christophe and Ball, Steven G.}, title = {Transition from glycogen to starch metabolism in Archaeplastida}, series = {Trends in plant science}, volume = {19}, journal = {Trends in plant science}, number = {1}, publisher = {Elsevier}, address = {London}, issn = {1360-1385}, doi = {10.1016/j.tplants.2013.08.004}, pages = {18 -- 28}, year = {2014}, abstract = {In this opinion article we propose a scenario detailing how two crucial components have evolved simultaneously to ensure the transition of glycogen to starch in the cytosol of the Archaeplastida last common ancestor: (i) the recruitment of an enzyme from intracellular Chlamydiae pathogens to facilitate crystallization of alpha-glucan chains; and (ii) the evolution of novel types of polysaccharide (de)phosphorylating enzymes from preexisting glycogen (de)phosphorylation host pathways to allow the turnover of such crystals. We speculate that the transition to starch benefitted Archaeplastida in three ways: more carbon could be packed into osmotically inert material; the host could resume control of carbon assimilation from the chlamydial pathogen that triggered plastid endosymbiosis; and cyanobacterial photosynthate export could be integrated in the emerging Archaeplastida.}, language = {en} }