@article{ScheinerSteinbachClassenetal.2014, author = {Scheiner, Ricarda and Steinbach, Anne and Classen, Gerbera and Strudthoff, Nicole and Scholz, Henrike}, title = {Octopamine indirectly affects proboscis extension response habituation in Drosophila melanogaster by controlling sucrose responsiveness}, series = {Journal of insect physiology}, volume = {69}, journal = {Journal of insect physiology}, publisher = {Elsevier}, address = {Oxford}, issn = {0022-1910}, doi = {10.1016/j.jinsphys.2014.03.011}, pages = {107 -- 117}, year = {2014}, abstract = {Octopamine is an important neurotransmitter in insects with multiple functions. Here, we investigated the role of this amine in a simple form of learning (habituation) in the fruit fly Drosophila melanogaster. Specifically, we asked if octopamine is necessary for normal habituation of a proboscis extension response (PER) to different sucrose concentrations. In addition, we analyzed the relationship between responsiveness to sucrose solutions applied to the tarsus and habituation of the proboscis extension response in the same individual. The Tyramine-beta-hydroxylase (T beta h) mutant lacks the enzyme catalyzing the final step of octopamine synthesis. This mutant was significantly less responsive to sucrose than controls. The reduced responsiveness directly led to faster habituation. Systemic application of octopamine or induction of octopamine synthesis by T beta h expression in a cluster of octopaminergic neurons within the suboesophageal ganglion restored sucrose responsiveness and habituation of octopamine mutants to control level. Further analyses imply that the reduced sucrose responsiveness of T beta h mutants is related to a lower sucrose preference, probably due to a changed carbohydrate metabolism, since T beta h mutants survived significantly longer under starved conditions. These findings suggest a pivotal role for octopamine in regulating sucrose responsiveness in fruit flies. Further, octopamine indirectly influences non-associative learning and possibly associative appetitive learning by regulating the evaluation of the sweet component of a sucrose reward. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }