@article{IroumeCareyBronstertetal.2011, author = {Iroume, Andres and Carey, Patricio and Bronstert, Axel and Huber, Anton and Palacios, Hardin}, title = {GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile}, series = {Revista t{\´e}cnica de la Facultad de Ingenieria}, volume = {34}, journal = {Revista t{\´e}cnica de la Facultad de Ingenieria}, number = {2}, publisher = {Facultad de Ingenieria Universidad del Zulia}, address = {Maracaibo}, issn = {0254-0770}, pages = {119 -- 128}, year = {2011}, abstract = {This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile.}, language = {es} } @article{StruckAndermannHoviusetal.2015, author = {Struck, Martin and Andermann, Christoff and Hovius, Niels and Korup, Oliver and Turowski, Jens M. and Bista, Raj and Pandit, Hari P. and Dahal, Ranjan K.}, title = {Monsoonal hillslope processes determine grain size-specific suspended sediment fluxes in a trans-Himalayan river}, series = {Geophysical research letters}, volume = {42}, journal = {Geophysical research letters}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/2015GL063360}, pages = {2302 -- 2308}, year = {2015}, abstract = {Sediments in rivers record the dynamics of erosion processes. While bulk sediment fluxes are easily and routinely obtained, sediment caliber remains underexplored when inferring erosion mechanisms. Yet sediment grain size distributions may be the key to discriminating their origin. We have studied grain size-specific suspended sediment fluxes in the Kali Gandaki, a major trans-Himalayan river. Two strategically located gauging stations enable tracing of sediment caliber on either side of the Himalayan orographic barrier. The data show that fine sediment input into the northern headwaters is persistent, while coarse sediment comes from the High Himalayas during the summer monsoon. A temporally matching landslide inventory similarly indicates the prominence of monsoon-driven hillslope mass wasting. Thus, mechanisms of sediment supply can leave strong traces in the fluvial caliber, which could project well beyond the mountain front and add to the variability of the sedimentary record of orogen erosion.}, language = {en} }