@article{BlanchardAbeykoonFrostetal.2021, author = {Blanchard, Ingrid and Abeykoon, Sumith and Frost, Daniel J. and Rubie, David C.}, title = {Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions}, series = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, volume = {106}, journal = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, number = {11}, publisher = {Mineralogical Society of America}, address = {Washington, DC [u.a.]}, issn = {0003-004X}, doi = {10.2138/am-2021-7649}, pages = {1835 -- 1843}, year = {2021}, abstract = {The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean.}, language = {en} }