@article{Rheinberg2020, author = {Rheinberg, Falko}, title = {Intrinsic motivation and flow}, series = {Motivation Science}, volume = {6}, journal = {Motivation Science}, number = {3}, publisher = {American Psychological Association}, address = {Washington}, issn = {2333-8113}, doi = {10.1037/mot0000165}, pages = {199 -- 200}, year = {2020}, abstract = {From the beginning of his work as a researcher, Heinz Heckhausen was interested in activities that are performed for their own sake and not only for some rewarding consequences-later addressed with the term "intrinsic motivation." One of his conceptual contributions to this area was the systematization of the bewildering heterogeneity of differentiations between various concepts of intrinsic and extrinsic motivation. In the conception, he himself preferred, intrinsic motivation could include incentives of actions outcome if the goal is thematically identical with the action. Doing so the per se goal directed achievement motivation could be understood as intrinsically motivated. This understanding of achievement motivation was productively utilized in educational psychology. His interest in intrinsic motivation stimulated research on activity specific incentives. One of these incentives is the total emergence with a smooth-running activity-an incentive Csikszentmihalyi had already described as "flow experience."}, language = {en} } @article{FeudelTuckermanGellertetal.2015, author = {Feudel, Fred and Tuckerman, L. S. and Gellert, Marcus and Seehafer, Norbert}, title = {Bifurcations of rotating waves in rotating spherical shell convection}, series = {Physical Review E}, volume = {92}, journal = {Physical Review E}, number = {5}, publisher = {American Physical Society}, address = {Woodbury}, issn = {1539-3755}, doi = {10.1103/PhysRevE.92.053015}, year = {2015}, abstract = {The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Benard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.}, language = {en} } @article{JingKumarHesseetal.2020, author = {Jing, Miao and Kumar, Rohini and Heße, Falk and Thober, Stephan and Rakovec, Oldrich and Samaniego, Luis and Attinger, Sabine}, title = {Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {3}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1607-7938}, doi = {10.5194/hess-24-1511-2020}, pages = {1511 -- 1526}, year = {2020}, abstract = {Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (N{\"a}gelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale hydrologic model (mHM) and a fully distributed groundwater model, OpenGeoSys (OGS). mHM is forced with climate simulations of five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as boundary forcings to the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that groundwater recharges and levels are expected to increase slightly under future climate scenarios. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. Changes in mean travel time exhibit a larger variability than those in groundwater levels. The ensemble simulations do not show a systematic relationship between the projected change (in both groundwater levels and travel times) and the warming level, but they indicate an increased variability in projected changes with adjusting the enhanced warming level from 1.5 to 3 ∘C. Correspondingly, it is highly recommended to restrain the trend of global warming.}, language = {en} }