@misc{LimbergerScheibelTrappetal.2017, author = {Limberger, Daniel and Scheibel, Willy and Trapp, Matthias and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Mixed-projection treemaps}, series = {21st International Conference Information Visualisation (IV)}, journal = {21st International Conference Information Visualisation (IV)}, publisher = {Institute of Electrical and Electronics Engineers}, address = {Los Alamitos}, isbn = {978-1-5386-0831-9}, issn = {2375-0138}, doi = {10.1109/iV.2017.67}, pages = {164 -- 169}, year = {2017}, abstract = {This paper presents a novel technique for combining 2D and 2.5D treemaps using multi-perspective views to leverage the advantages of both treemap types. It enables a new form of overview+detail visualization for tree-structured data and contributes new concepts for real-time rendering of and interaction with treemaps. The technique operates by tilting the graphical elements representing inner nodes using affine transformations and animated state transitions. We explain how to mix orthogonal and perspective projections within a single treemap. Finally, we show application examples that benefit from the reduced interaction overhead.}, language = {en} } @article{ScheibelTrappLimbergeretal.2020, author = {Scheibel, Willy and Trapp, Matthias and Limberger, Daniel and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {A taxonomy of treemap visualization techniques}, series = {Science and Technology Publications}, journal = {Science and Technology Publications}, publisher = {Springer}, address = {Berlin}, pages = {8}, year = {2020}, abstract = {A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured data and, more general, hierarchically structured data. The family of visualization techniques that use a visual metaphor for parent-child relationships based "on the property of containment" (Johnson, 1993) is commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes increasingly important to distinguish clearly between techniques and their specific characteristics. This paper proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one another: TS TC TIE TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself.}, language = {en} }