@article{SteppertSchoenfelderSchultzetal.2021, author = {Steppert, Isabel and Sch{\"o}nfelder, Jessy and Schultz, Carolyn and Kuhlmeier, Dirk}, title = {Rapid in vitro differentiation of bacteria by ion mobility spectrometry}, series = {Applied Microbiology and Biotechnology}, volume = {105}, journal = {Applied Microbiology and Biotechnology}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0175-7598}, doi = {10.1007/s00253-021-11315-w}, pages = {4297 -- 4307}, year = {2021}, abstract = {Rapid screening of infected people plays a crucial role in interrupting infection chains. However, the current methods for identification of bacteria are very tedious and labor intense. Fast on-site screening for pathogens based on volatile organic compounds (VOCs) by ion mobility spectrometry (IMS) could help to differentiate between healthy and potentially infected subjects. As a first step towards this, the feasibility of differentiating between seven different bacteria including resistant strains was assessed using IMS coupled to multicapillary columns (MCC-IMS). The headspace above bacterial cultures was directly drawn and analyzed by MCC-IMS after 90 min of incubation. A cluster analysis software and statistical methods were applied to select discriminative VOC clusters. As a result, 63 VOC clusters were identified, enabling the differentiation between all investigated bacterial strains using canonical discriminant analysis. These 63 clusters were reduced to 7 discriminative VOC clusters by constructing a hierarchical classification tree. Using this tree, all bacteria including resistant strains could be classified with an AUC of 1.0 by receiver-operating characteristic analysis. In conclusion, MCC-IMS is able to differentiate the tested bacterial species, even the non-resistant and their corresponding resistant strains, based on VOC patterns after 90 min of cultivation. Although this result is very promising, in vivo studies need to be performed to investigate if this technology is able to also classify clinical samples. With a short analysis time of 5 min, MCC-IMS is quite attractive for a rapid screening for possible infections in various locations from hospitals to airports. Key Points center dot Differentiation of bacteria by MCC-IMS is shown after 90-min cultivation. center dot Non-resistant and resistant strains can be distinguished. center dot Classification of bacteria is possible based on metabolic features.}, language = {en} } @article{ReichelHoenigLiebischetal.2015, author = {Reichel, Martin and Hoenig, Stefanie and Liebisch, Gerhard and L{\"u}th, Anja and Kleuser, Burkhard and Gulbins, Erich and Schmitz, Gerd and Kornhuber, Johannes}, title = {Alterations of plasma glycerophospholipid and sphingolipid species in male alcohol-dependent patients}, series = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, volume = {1851}, journal = {Biochimica et biophysica acta : Molecular and cell biology of lipids}, number = {11}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1388-1981}, doi = {10.1016/j.bbalip.2015.08.005}, pages = {1501 -- 1510}, year = {2015}, abstract = {Background: Alcohol abuse is a major risk factor for somatic and neuropsychiatric diseases. Despite their potential clinical importance, little is known about the alterations of plasma glycerophospholipid (GPL) and sphingolipid (SPL) species associated with alcohol abuse. Methods: Plasma GPL and SPL species were quantified using electrospray ionization tandem mass spectrometry in samples from 23 male alcohol-dependent patients before and after detoxification, as well as from 20 healthy male controls. Results: A comparison of alcohol-dependent patients with controls revealed higher phosphatidylcholine (PC; P-value = 0.008) and phosphatidylinositol (PI; P-value = 0.001) concentrations in patients before detoxification, and higher PI (P-value = 0.001) and phosphatidylethanolamine (PE)-based plasmalogen (PEP; P-value = 0.003) concentrations after detoxification. Lysophosphatidylcholines (LPC) were increased by acute intoxication (P-value = 0.002). Sphingomyelin (SM) concentration increased during detoxification (P-value = 0.011). The concentration of SM 23:0 was lower in patients (P-value = 2.79 x 10(-5)), and the concentrations of ceramide Cer d18:1/16:0 and Cer d18:1/18:0 were higher in patients (P-value = 2.45 x 10(-5) and 3.73 x 10(-5)). Activity of lysosomal acid sphingomyelinase (ASM) in patients correlated positively with the concentrations of eight LPC species, while activity of secreted ASM was inversely correlated with several PE, PI and PC species, and positively correlated with the molar ratio of PC to SM (Pearson's r = 0.432; P-value = 0.039). Conclusion: Plasma concentrations of numerous GPL and SPL species were altered in alcohol-dependent patients. These molecules might serve as potential biomarkers to improve the diagnosis of patients and to indicate health risks associated with alcohol abuse. Our study further indicates that there are strong interactions between plasma GPL concentrations and SPL metabolism. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} }