@article{DielforderFrascaBruneetal.2019, author = {Dielforder, Armin and Frasca, Gianluca and Brune, Sascha and Ford, Mary}, title = {Formation of the Iberian-European convergent plate boundary fault and its effect on intraplate deformation in Central Europe}, series = {Geochemistry, geophysics, geosystems}, volume = {20}, journal = {Geochemistry, geophysics, geosystems}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2018GC007840}, pages = {2395 -- 2417}, year = {2019}, abstract = {With the Late Cretaceous onset of Africa-Iberia-Europe convergence Central Europe experienced a pulse of intraplate shortening lasting some 15-20 Myr. This deformation event documents area-wide deviatoric compression of Europe and has been interpreted as a far-field response to Africa-Iberia-Europe convergence. However, the factors that governed the compression of Europe and conditioned the transient character of the deformation event have remained unclear. Based on mechanical considerations, numerical simulations, and geological reconstructions, we examine how the dynamics of intraplate deformation were governed by the formation of a convergent plate boundary fault between Iberia and Europe. During the Late Cretaceous, plate convergence was accommodated by the inversion of a young hyperextended rift system separating Iberia from Europe. Our analysis shows that the strength of the lithosphere beneath this rift was initially sufficient to transmit large compressive stresses far into Europe, though the lithosphere beneath the rift was thinned and thermally weakened. Continued convergence forced the formation of the plate boundary fault between Iberia and Europe. The fault evolved progressively and constituted a lithospheric-scale structure at the southern margin of Europe that weakened rheologically. This development caused a decrease in mechanical coupling between Iberia and Europe and a reduction of compressional far field stresses, which eventually terminated intraplate deformation in Central Europe. Taken together, our findings suggest that the Late Cretaceous intraplate deformation event records a high force transient that relates to the earliest strength evolution of a lithospheric-scale plate boundary fault.}, language = {en} } @article{RoetzlerTimmerman2020, author = {R{\"o}tzler, Jochen and Timmerman, Martin Jan}, title = {Geochronological and petrological constraints from the evolution in the Saxon Granulite Massif, Germany, on the Variscan continental collision orogeny}, series = {Journal of metamorphic geology}, volume = {39}, journal = {Journal of metamorphic geology}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0263-4929}, doi = {10.1111/jmg.12559}, pages = {3 -- 38}, year = {2020}, abstract = {Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two- or multi-plate setting during inter- or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir-like body of high-Pgranulite below from low-Pmetasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high-Pamphibolite facies metamorphism in the mid- to late-Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar-Ar biotite ages with publishedP-T-tdata for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of similar to 8 mm/year and similar to 80 degrees C/Ma, with a drop in exhumation rate from similar to 20 to similar to 2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag ofc. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90 degrees C/Ma when all units had assembled into the massif. A two-plate model of the Variscan orogeny in which the above evolution is related to a short-lived intra-Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale ofc. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.}, language = {en} }