@article{MelnickHillemannJaraMunozetal.2019, author = {Melnick, Daniel and Hillemann, Christian and Jara Mu{\~n}oz, Julius and Garrett, Ed and Cortes-Aranda, Joaquin and Molina, Diego and Tassara, Andr{\´e}s and Strecker, Manfred}, title = {Hidden Holocene Slip Along the Coastal El Yolki Fault in Central Chile and Its Possible Link With Megathrust Earthquakes}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {7}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB017188}, pages = {7280 -- 7302}, year = {2019}, abstract = {Megathrust earthquakes are commonly accompanied by increased upper-plate seismicity and occasionally triggered fault slip. In Chile, crustal faults slipped during and after the 2010 Maule (M8.8) earthquake. We studied the El Yolki fault (EYOF), a transtensional structure midways the Maule rupture not triggered in 2010. We mapped a Holocene coastal plain using light detection and ranging, which did not reveal surface ruptures. However, the inner-edge and shoreline angles along the coastal plain as well as 4.3- to 4.0-ka intertidal sediments are back-tilted on the EYOF footwall block, documenting 10 m of vertical displacement. These deformed markers imply similar to 2-mm/year throw rate, and dislocation models a slip rate of 5.6 mm/year for the EYOF. In a 5-m-deep trench, the Holocene intertidal sediments onlap to five erosive steps, interpreted as staircase wave-cut landforms formed by discrete events of relative sea level drop. We tentatively associated these steps with coseismic uplift during EYOF earthquakes between 4.3 and 4.0 ka. The Maule earthquake rupture may be subdivided into three subsegments based on coseismic slip and gravity anomalies. Coulomb stress transfer models predict neutral stress changes at the EYOF during the Maule earthquake but positive changes for a synthetic slip distribution at the central subsegment. If EYOF earthquakes were triggered by megathrust events, their slip distribution was probably focused in the central subsegment. Our study highlights the millennial variability of crustal faulting and the megathrust earthquake cycle in Chile, with global implications for assessing the hazards posed by hidden but potentially seismogenic coastal faults along subduction zones.}, language = {en} } @article{VargasFariasCarretieretal.2011, author = {Vargas, Gabriel and Farias, Marcelo and Carretier, Sebastien and Tassara, Andres and Baize, Stephane and Melnick, Daniel}, title = {Coastal uplift and tsunami effects associated to the 2010 M(w)8.8 Maule earthquake in Central Chile}, series = {Andean geology}, volume = {38}, journal = {Andean geology}, number = {1}, publisher = {Servicio Nacional de Geolog{\`i}a y Miner{\`i}a}, address = {Santiago}, issn = {0718-7106}, doi = {10.5027/andgeoV38n1-a12}, pages = {219 -- 238}, year = {2011}, abstract = {On February 27, 2010 at 03:34:08 AM an M(w)8.8 earthquake, with epicenter located off Cobquecura (73.24 degrees W; 36.29 degrees S), severely hit Central Chile. The tsunami waves that followed this event affected the coastal regions between the cities of Valparaiso and Valdivia, with minor effects as far as Coquimbo. The earthquake occurred along the subduction of the Nazca oceanic plate beneath the South American plate. Coseismic coastal uplift was estimated through observations of bleached lithothamnioids crustose coralline algae, which were exposed after the mainshock between 34.13 degrees S and 38.34 degrees S, suggesting the latitudinal distribution of the earthquake rupture. The measured coastal uplift values varied between 240 +/- 20 cm at sites closer to the trench along the western coast of the Arauco peninsula and 15 +/- 10 cm at sites located farther east. A maximum value of 260 +/- 50 cm was observed at the western coast of Santa Maria Island, which is similar to the reported uplift associated with the 1835 earthquake at Concepcion. Land subsidence values on the order of 0.5 m to 1 m evidenced a change in polarity and position of the coseismic hinge at 110-120 km from the trench. In four sites along the coast we observed a close match between coastal uplift values deduced from bleached lithothamnioids algae and GPS measurements. According to field observations tsunami heights reached ea. 14 m in the coastal area of the Maule Region immediately north of the epicenter, and diminished progressively northwards to 4-2 m near Valparaiso. Along the coast of Cobquecura, tsunami height values were inferior to 2-4 m. More variable tsunami heights of 6-8 m were measured at Dichato-Talcahuano and Tirua-Puerto Saavedra, in the Biobio and Arauco regions, respectively, to the south of the epicenter. According to eyewitnesses, the tsunami reached the coast between 12 to 20 and 30 to 45 minutes in areas located closer and faraway from the earthquake rupture zone, respectively. Destructive tsunami waves arrived also between 2.5 and 4.5 hours after the mainshock, especially along the coast of the Biobio and Arauco regions. The tsunami effects were highly variable along the coast, as a result of geomorphological and bathymetric local conditions, besides potential complexities induced by the main shock.}, language = {en} }