@article{HabelUlrichEberleetal.2022, author = {Habel, Jan Christian and Ulrich, Werner and Eberle, Jonas and Schmitt, Thomas}, title = {Species community structures of Afrotropical butterflies differ depending on the monitoring method}, series = {Biodiversity and conservation}, volume = {31}, journal = {Biodiversity and conservation}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-021-02332-2}, pages = {245 -- 259}, year = {2022}, abstract = {Standardised biodiversity assessment is crucial to understand community structures and population dynamics of animals. There exist various methods to monitor biodiversity. Approaches differ depending on the target species group and the aim of study, and show advantages and disadvantages. The obtained data and results are influenced by local environmental conditions and seasonal variability. In a comparative approach, we studied butterfly diversity and community structure in the dryland savannah biome of south-eastern Kenya with two different methods, transect counts and bait trapping. We repeatedly collected data throughout the dry and rainy seasons, in both near natural and anthropogenically influenced landscapes. Significantly more species and individuals were recorded by transect counts than by bait trapping, though the larger and more mobile Nymphalid species (and in particular representatives of the genus Charaxes) were comparatively overrepresented in traps. The transect data revealed much more pronounced effects of land-use and seasonality than the trap data. These results show that the choice of data collection methods must depend on the general research question, habitat conditions and season. To study the relative variation of species diversity and abundance, the collection of a fraction of the total species diversity might be sufficient. However, if the focus is on a largely complete recording of species diversity, the use of various collection methods is essential. More specifically, our data clearly demonstrate that transect counts represent a reasonable method for assessing butterfly diversity for the African dryland savannah region, but fails to fully capture occurrences of all species. Bait trapping can be used only as a supplementary method for assessing some few highly mobile low-density species.}, language = {en} } @article{SchererRadchukStaubachetal.2019, author = {Scherer, Cedric and Radchuk, Viktoriia and Staubach, Christoph and Mueller, Sophie and Blaum, Niels and Thulke, Hans-Hermann and Kramer-Schadt, Stephanie}, title = {Seasonal host life-history processes fuel disease dynamics at different spatial scales}, series = {Journal of animal ecology : a journal of the British Ecological Society}, volume = {88}, journal = {Journal of animal ecology : a journal of the British Ecological Society}, number = {11}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8790}, doi = {10.1111/1365-2656.13070}, pages = {1812 -- 1824}, year = {2019}, abstract = {Understanding the drivers underlying disease dynamics is still a major challenge in disease ecology, especially in the case of long-term disease persistence. Even though there is a strong consensus that density-dependent factors play an important role for the spread of diseases, the main drivers are still discussed and, more importantly, might differ between invasion and persistence periods. Here, we analysed long-term outbreak data of classical swine fever, an important disease in both wild boar and livestock, prevalent in the wild boar population from 1993 to 2000 in Mecklenburg-Vorpommern, Germany. We report outbreak characteristics and results from generalized linear mixed models to reveal what factors affected infection risk on both the landscape and the individual level. Spatiotemporal outbreak dynamics showed an initial wave-like spread with high incidence during the invasion period followed by a drop of incidence and an increase in seroprevalence during the persistence period. Velocity of spread increased with time during the first year of outbreak and decreased linearly afterwards, being on average 7.6 km per quarter. Landscape- and individual-level analyses of infection risk indicate contrasting seasonal patterns. During the persistence period, infection risk on the landscape level was highest during autumn and winter seasons, probably related to spatial behaviour such as increased long-distance movements and contacts induced by rutting and escaping movements. In contrast, individual-level infection risk peaked in spring, probably related to the concurrent birth season leading to higher densities, and was significantly higher in piglets than in reproductive animals. Our findings highlight that it is important to investigate both individual- and landscape-level patterns of infection risk to understand long-term persistence of wildlife diseases and to guide respective management actions. Furthermore, we highlight that exploring different temporal aggregation of the data helps to reveal important seasonal patterns, which might be masked otherwise.}, language = {en} } @article{WeithoffRochaGaedke2015, author = {Weithoff, Guntram and Rocha, Marcia R. and Gaedke, Ursula}, title = {Comparing seasonal dynamics of functional and taxonomic diversity reveals the driving forces underlying phytoplankton community structure}, series = {Freshwater biology}, volume = {60}, journal = {Freshwater biology}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0046-5070}, doi = {10.1111/fwb.12527}, pages = {758 -- 767}, year = {2015}, abstract = {In most biodiversity studies, taxonomic diversity is the measure for the multiplicity of species and is often considered to represent functional diversity. However, trends in taxonomic diversity and functional diversity may differ, for example, when many functionally similar but taxonomically different species co-occur in a community. The differences between these diversity measures are of particular interest in diversity research for understanding diversity patterns and their underlying mechanisms. We analysed a temporally highly resolved 20-year time series of lake phytoplankton to determine whether taxonomic diversity and functional diversity exhibit similar or contrasting seasonal patterns. We also calculated the functional mean of the community in n-dimensional trait space for each sampling day to gain further insights into the seasonal dynamics of the functional properties of the community. We found an overall weak positive relationship between taxonomic diversity and functional diversity with a distinct seasonal pattern. The two diversity measures showed synchronous behaviour from early spring to mid-summer and a more complex and diverging relationship from autumn to late winter. The functional mean of the community exhibited a recurrent annual pattern with the most prominent changes before and after the clear-water phase. From late autumn to winter, the functional mean of the community and functional diversity were relatively constant while taxonomic diversity declined, suggesting competitive exclusion during this period. A further decline in taxonomic diversity concomitant with increasing functional diversity in late winter to early spring is seen as a result of niche diversification together with competitive exclusion. Under these conditions, several different sets of traits are suitable to thrive, but within one set of functional traits only one, or very few, morphotypes can persist. Taxonomic diversity alone is a weak descriptor of trait diversity in phytoplankton. However, the combined analysis of taxonomic diversity and functional diversity, along with the functional mean of the community, allows for deeper insights into temporal patterns of community assembly and niche diversification.}, language = {en} } @misc{EccardFeyCaspersetal.2011, author = {Eccard, Jana and Fey, Karen and Caspers, Barbara A. and Yl{\"o}nen, Hannu}, title = {Breeding state and season affect interspecific interaction types}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {729}, issn = {1866-8372}, doi = {10.25932/publishup-42939}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429398}, pages = {623 -- 633}, year = {2011}, abstract = {Indirect resource competition and interference are widely occurring mechanisms of interspecific interactions. We have studied the seasonal expression of these two interaction types within a two-species, boreal small mammal system. Seasons differ by resource availability, individual breeding state and intraspecific social system. Live-trapping methods were used to monitor space use and reproduction in 14 experimental populations of bank voles Myodes glareolus in large outdoor enclosures with and without a dominant competitor, the field vole Microtus agrestis. We further compared vole behaviour using staged dyadic encounters in neutral arenas in both seasons. Survival of the non-breeding overwintering bank voles was not affected by competition. In the spring, the numbers of male bank voles, but not of females, were reduced significantly in the competition populations. Bank vole home ranges expanded with vole density in the presence of competitors, indicating food limitation. A comparison of behaviour between seasons based on an analysis of similarity revealed an avoidance of costly aggression against opponents, independent of species. Interactions were more aggressive during the summer than during the winter, and heterospecific encounters were more aggressive than conspecific encounters. Based on these results, we suggest that interaction types and their respective mechanisms are not either-or categories and may change over the seasons. During the winter, energy constraints and thermoregulatory needs decrease direct aggression, but food constraints increase indirect resource competition. Direct interference appears in the summer, probably triggered by each individual's reproductive and hormonal state and the defence of offspring against conspecific and heterospecific intruders. Both interaction forms overlap in the spring, possibly contributing to spring declines in the numbers of subordinate species.}, language = {en} }