@misc{RaafatMrochenAl’Sholuietal.2020, author = {Raafat, Dina and Mrochen, Daniel M. and Al'Sholui, Fawaz and Heuser, Elisa and Ryll, Ren{\´e} and Pritchett-Corning, Kathleen R. and Jacob, Jens and Walther, Bernd and Matuschka, Franz-Rainer and Richter, Dania}, title = {Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {2}, issn = {1866-8364}, doi = {10.25932/publishup-51237}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512379}, pages = {24}, year = {2020}, abstract = {Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4\%) than laboratory rats (12.3\%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively.}, language = {en} } @article{RaafatMrochenAl’Sholuietal.2020, author = {Raafat, Dina and Mrochen, Daniel M. and Al'Sholui, Fawaz and Heuser, Elisa and Ryll, Ren{\´e} and Pritchett-Corning, Kathleen R. and Jacob, Jens and Walther, Bernd and Matuschka, Franz-Rainer and Richter, Dania}, title = {Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats}, series = {Toxins}, volume = {12}, journal = {Toxins}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2072-6651}, doi = {10.3390/toxins12020080}, pages = {1 -- 22}, year = {2020}, abstract = {Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4\%) than laboratory rats (12.3\%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S. aureus lineages—many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S. aureus, respectively.}, language = {en} } @article{KnocheLisecSchwerdtleetal.2022, author = {Knoche, Lisa and Lisec, Jan and Schwerdtle, Tanja and Koch, Matthias}, title = {LC-HRMS-Based identification of transformation products of the drug salinomycin generated by electrochemistry and liver microsome}, series = {Antibiotics}, volume = {11}, journal = {Antibiotics}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-6382}, doi = {10.3390/antibiotics11020155}, pages = {12}, year = {2022}, abstract = {The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction.}, language = {en} } @misc{RoderHille2014, author = {Roder, Phillip and Hille, Carsten}, title = {ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-76851}, pages = {1699 -- 1710}, year = {2014}, abstract = {Sodium ions (Na+) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na+ concentrations ([Na+]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na+-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na+-sensitivity appropriate for recordings in living cells. The Na+-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na+]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na+]i rise in cockroach salivary gland cells, which was dependent on a Na+-K+-2Cl- cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.}, language = {en} } @article{RoderHille2014, author = {Roder, Phillip and Hille, Carsten}, title = {ANG-2 for quantitative Na+ determination in living cells by time-resolved fluorescence microscopy}, series = {Photochemical \& Photobiological Sciences}, volume = {12}, journal = {Photochemical \& Photobiological Sciences}, number = {13}, editor = {Hille, Carsten}, publisher = {The Royal Society of Chemistry}, address = {Cambridge}, issn = {1474-905X}, pages = {1699 -- 1710}, year = {2014}, abstract = {Sodium ions (Na+) play an important role in a plethora of cellular processes, which are complex and partly still unexplored. For the investigation of these processes and quantification of intracellular Na+ concentrations ([Na+]i), two-photon coupled fluorescence lifetime imaging microscopy (2P-FLIM) was performed in the salivary glands of the cockroach Periplaneta americana. For this, the novel Na+-sensitive fluorescent dye Asante NaTRIUM Green-2 (ANG-2) was evaluated, both in vitro and in situ. In this context, absorption coefficients, fluorescence quantum yields and 2P action cross-sections were determined for the first time. ANG-2 was 2P-excitable over a broad spectral range and displayed fluorescence in the visible spectral range. Although the fluorescence decay behaviour of ANG-2 was triexponential in vitro, its analysis indicates a Na+-sensitivity appropriate for recordings in living cells. The Na+-sensitivity was reduced in situ, but the biexponential fluorescence decay behaviour could be successfully analysed in terms of quantitative [Na+]i recordings. Thus, physiological 2P-FLIM measurements revealed a dopamine-induced [Na+]i rise in cockroach salivary gland cells, which was dependent on a Na+-K+-2Cl- cotransporter (NKCC) activity. It was concluded that ANG-2 is a promising new sodium indicator applicable for diverse biological systems.}, language = {en} } @phdthesis{Appl2007, author = {Appl, Thomas}, title = {Neurochemical and functional characterisation of the Melanin-concentrating hormone system in the rat brain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14604}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The central melanin-concentrating hormone (MCH) system has been intensively studied for its involvement in the regulation of feeding behaviour and body weight regulation. The importance of the neuropeptide MCH in the control of energy balance has been underlined by MCH knock out and Melanin-concentrating hormone receptor subtype 1 (MCHR-1) knock-out animals. The anorectic and anti-obesity effects of selective MCHR-1 antagonists have confirmed the notion that pharmacological blockade of MCHR-1 is a potential therapeutic approach for obesity. First aim of this work is to study the neurochemical "equipment" of MCHR-1 immunoreactive neurons by double-labelling immunohistochemistry within the rat hypothalamus. Of special interest is the neuroanatomical identification of other hypothalamic neuropeptides that are co-distributed with MCHR-1. A second part of this study deals with the examination of neuronal activation patterns after pharmacological or physiological, feeding-related stimuli and was introduced to further understand central regulatory mechanisms of the MCH system. In the first part of work, I wanted to neurochemically characterize MCHR-1 immunoreactive neurons in the rat hypothalamus for colocalisation with neuropeptides of interest. Therefore I performed an immunohistochemical colocalisation study using a specific antibody against MCHR-1 in combination with antibodies against hypothalamic neuropeptides. I showed that MCHR-1 immunoreactivity (IR) was co-localised with orexin A in the lateral hypothalamus, and with adrenocorticotropic hormone and neuropeptide Y in the arcuate nucleus. Additionally, MCHR-1 IR was co-localised with the neuropeptides vasopressin and oxytocin in magnocellular neurons of the supraoptic and paraventricular hypothalamic nucleus and corticotrophin releasing hormone in the parvocellular division of the paraventricular hypothalamic nucleus. Moreover, for the first time MCHR-1 immunoreactivity was found in both the adenohypophyseal and neurohypophyseal part of the rat pituitary. These results provide the neurochemical basis for previously described potential physiological actions of MCH at its target receptor. In particular, the MCHR-1 may be involved not only in food intake regulation, but also in other physiological actions such as fluid regulation, reproduction and stress response, possibly through here examined neuropeptides. Central activation patterns induced by pharmacological or physiological stimulation can be mapped using c-Fos immunohistochemistry. In the first experimental design, central administration (icv) of MCH in the rat brain resulted in acute and significant increase of food and water intake, but this animal treatment did not induce a specific c-Fos induction pattern in hypothalamic nuclei. In contrast, sub-chronic application of MCHR-1 antagonist promoted a significant decrease in food- and water intake during an eight day treatment period. A qualitative analysis of c-Fos immunohistochemistry of sections derived from MCHR-1 antagonist treated animals showed a specific neuronal activation in the paraventricular nucleus, the supraoptic nucleus and the dorsomedial hypothalamus. These results could be substantiated by quantitative evaluation of an automated, software-supported analysis of the c-Fos signal. Additionally, I examined the activation pattern of rats in a restricted feeding schedule (RFS) to identify pathways involved in hunger and satiety. Animals were trained for 9 days to feed during a three hour period. On the last day, food restricted animals was also allowed to feed for the three hours, while food deprived (FD) animals did not receive food. Mapping of neuronal activation showed a clear difference between stareved (FD) and satiated (FR) rats. FD animals showed significant induction of c-Fos in forebrain regions, several hypothalamic nuclei, amygdaloid thalamus and FR animals in the supraoptic nucleus and the paraventricular nucleus of the hypothalamus, and the nucleus of the solitary tract. In the lateral hypothalamus of FD rats, c-Fos IR showed strong colocalisation for Orexin A, but no co-staining for MCH immunoreactivity. However, a large number of c-Fos IR neurons within activated regions of FD and FR animals was co-localised with MCHR-1 within selected regions. To conclude, the experimental set-up of scheduled feeding can be used to induce a specific hunger or satiety activation pattern within the rat brain. My results show a differential activation by hunger signals of MCH neurons and furthermore, demonstrates that MCHR-1 expressing neurons may be essential parts of downstream processing of physiological feeding/hunger stimuli. In the final part of my work, the relevance of here presented studies is discussed with respect to possible introduction of MCHR-1 antagonists as drug candidates for the treatment of obesity.}, language = {en} }