@phdthesis{Kozempel2005, author = {Kozempel, Steffen}, title = {Emulgatorfreie Emulsionspolymerisation : Monomerl{\"o}sungszustand und Teilchenbildung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6106}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Polymere sind zweifelsohne der Werkstoff in unserer Zeit. Ein bedeutender Anteil der heute industriell produzierten Polymere wird durch Emulsionspolymerisation hergestellt. Obwohl die Emulsionspolymerisation breite Anwendung findet, sind die involvierten Mechanismen von Teilchenbildung und -wachstum noch heute Gegenstand heftiger Kontroversen. Ein Spezialfall der Emulsionspolymerisation ist die emulgatorfreie Emulsionspolymerisation. Hierbei handelt es sich um ein scheinbar einfacheres System der Emulsionspolymerisation, weil diese Methode ohne Zusatz von Emulgatoren auskommt. Die Teilchenbildung ist ein fundamentaler Vorgang im Verlauf der Emulsionspolymerisation, da sie zur Ausbildung der polymeren Latexphase f{\"u}hrt. Detaillierte Kenntnisse zum Mechanismus der Nukleierung erm{\"o}glichen eine bessere Kontrolle des Reaktionsverlaufes und damit der Eigenschaften des Endproduktes der Emulsionspolymerisation, dem Polymer-Latex. Wie bereits vorangegangene Arbeiten auf dem Gebiet der emulgatorfreien Emulsionspolymerisation von Styrol sowie Methylmethacrylat und Vinylacetat zeigen konnten, verl{\"a}uft die Teilchenbildung in diesen Systemen {\"u}ber den Mechanismus der aggregativen Nukleierung. Im Zusammenhang mit den Ergebnissen der genannten Arbeiten tauchte dabei immer wieder ein interessanter Effekt im Bereich der Partikelnukleierung auf. Dieses als JUMBO-Effekt bezeichnete Ph{\"a}nomen zeigte sich reproduzierbar in einem Anstieg der Transmission im Bereich der Teilchenbildung von emulgatorfreien Emulsionspolymerisationen von Styrol, MMA und VAc. Nach der Initiierung der Polymerisation in einer w{\"a}ssrigen Monomerl{\"o}sung durch Kaliumperoxodisulfat steigt die Durchl{\"a}ssigkeit bei 546 nm auf {\"u}ber 100 \% an. F{\"u}r diese „Abnahme der optischen Dichte" wurden verschiedene Erkl{\"a}rungsm{\"o}glichkeiten vorgeschlagen, jedoch blieb ein Nachweis der Ursache f{\"u}r den JUMBO-Effekt bisher aus. Dieser Mangel an Aufkl{\"a}rung eines offenbar grundlegenden Ph{\"a}nomens in der emulgatorfreien Emulsionspolymerisation bildet den „Nukleus" f{\"u}r die vorlie¬gende Arbeit. Durch die vorliegende Dissertation konnte das Verst{\"a}ndnis f{\"u}r Ph{\"a}nomene der Teilchenbildung in der emulgatorfreien Emulsionspolymerisation von Styrol mit KPS erweitert werden. In diesem Rahmen wurde das Online-Monitoring des Polymerisationsvorganges verbessert und um verschiedene Methoden erweitert: Zur simultanen Erfassung von Tr{\"u}bungsdaten bei verschiedenen Wellenl{\"a}ngen konnte ein modernes Spektrometer in Kombination mit einer Lichtleitersonde in die Reaktionsapparatur integriert werden. Es wurde ein verbesserter Algorithmus zur Datenbearbeitung f{\"u}r die Partikelgr{\"o}ßenbestimmung mittels faseroptischer dynamischer Lichtstreuung entwickelt. Es wurden Online-Partikelgr{\"o}ßenanalysen mittels statischer Vielwinkellichtstreuung bei Polymerisationen direkt in entsprechenden Lichtstreuk{\"u}vetten durchgef{\"u}hrt. Diese zur Beschreibung des untersuchten Systems eingef{\"u}hrten Methoden sowie ein zeitlich vollst{\"a}ndiges Monitoring des gesamten Polymerisationsverlaufes, beginnend mit der Zugabe von Monomer zu Wasser, f{\"u}hrten zu neuen Erkenntnissen zur emulgatorfreien Emulsionspolymerisation. Es wurden große Monomeraggregate, die sog. Nanotr{\"o}pfchen, in w{\"a}ssriger L{\"o}sung (emulgatorfrei) nachgewiesen. Diese Aggregate bilden sich spontan und treten verst{\"a}rkt in entgastem Wasser auf. Die Existenz von Nanotr{\"o}pfchen in Verbindung mit Tr{\"u}bungs- und gaschromatografischen Messungen l{\"a}sst auf eine molekular gel{\"o}ste „Wirkkonzentration" von Styrol in Wasser schließen, die bedeutend geringer ist als die absolute S{\"a}ttigungskonzentration. Es konnten Hinweise auf eine Reaktion h{\"o}herer Ordnung im System Wasser/Styrol/KPS gefunden werden. Es konnte gezeigt werden, dass eine pr{\"a}zise Einstellung der Nukleierungsdauer {\"u}ber die Zeit der Equilibrierung von Wasser mit Styrol m{\"o}glich ist. Der JUMBO-Effekt, dem in dieser Arbeit ein besonderes Interesse galt, konnte in gewisser Weise entmystifiziert werden. Es konnte gezeigt werden, dass die Durchl{\"a}ssigkeit der Reaktionsmischung bereits beim L{\"o}sen von Styrol in Wasser durch Bildung von Styrolaggregaten abnimmt. Der darauf folgende kurzzeitige Transmissionsanstieg im Zusammenhang mit der Nukleierung erreicht dabei nicht mehr 100 \% des Referenzwertes von reinem Wasser. Alle experimentellen Daten sprechen f{\"u}r die Nanotr{\"o}pfchen als Ursache des JUMBO-Effekts. Wie die Ergebnisse dieser Arbeit zeigen, ist selbst das relativ „einfache" System der emulgatorfreien Emulsionspolymerisation komplizierter als angenommen. Die Existenz von großen Styrolaggregaten in w{\"a}ssriger L{\"o}sung erfordert eine neue Betrachtungsweise des Reaktionssystems, in die auch der L{\"o}sungszustand des Monomers mit einbezogen werden muss.}, subject = {Emulsionspolymerisation}, language = {de} } @phdthesis{Lazar2005, author = {Lazar, Paul}, title = {Transport mechanisms and wetting dynamics in molecularly thin films of long-chain alkanes at solid/vapour interface : relation to the solid-liquid phase transition}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5275}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Wetting and phase transitions play a very important role our daily life. Molecularly thin films of long-chain alkanes at solid/vapour interfaces (e.g. C30H62 on silicon wafers) are very good model systems for studying the relation between wetting behaviour and (bulk) phase transitions. Immediately above the bulk melting temperature the alkanes wet partially the surface (drops). In this temperature range the substrate surface is covered with a molecularly thin ordered, solid-like alkane film ("surface freezing"). Thus, the alkane melt wets its own solid only partially which is a quite rare phenomenon in nature. The thesis treats about how the alkane melt wets its own solid surface above and below the bulk melting temperature and about the corresponding melting and solidification processes. Liquid alkane drops can be undercooled to few degrees below the bulk melting temperature without immediate solidification. This undercooling behaviour is quite frequent and theoretical quite well understood. In some cases, slightly undercooled drops start to build two-dimensional solid terraces without bulk solidification. The terraces grow radially from the liquid drops on the substrate surface. They consist of few molecular layers with the thickness multiple of all-trans length of the molecule. By analyzing the terrace growth process one can find that, both below and above the melting point, the entire substrate surface is covered with a thin film of mobile alkane molecules. The presence of this film explains how the solid terrace growth is feeded: the alkane molecules flow through it from the undercooled drops to the periphery of the terrace. The study shows for the first time the coexistence of a molecularly thin film ("precursor") with partially wetting bulk phase. The formation and growth of the terraces is observed only in a small temperature interval in which the 2D nucleation of terraces is more likely than the bulk solidification. The nucleation mechanisms for 2D solidification are also analyzed in this work. More surprising is the terrace behaviour above bulk the melting temperature. The terraces can be slightly overheated before they melt. The melting does not occur all over the surface as a single event; instead small drops form at the terrace edge. Subsequently these drops move on the surface "eating" the solid terraces on their way. By this they grow in size leaving behind paths from were the material was collected. Both overheating and droplet movement can be explained by the fact that the alkane melt wets only partially its own solid. For the first time, these results explicitly confirm the supposed connection between the absence of overheating in solid and "surface melting": the solids usually start to melt without an energetic barrier from the surface at temperatures below the bulk melting point. Accordingly, the surface freezing of alkanes give rise of an energetic barrier which leads to overheating.}, subject = {Benetzung}, language = {en} }