@article{ZimmermannStoofLeichsenringKruseetal.2021, author = {Zimmermann, Heike and Stoof-Leichsenring, Kathleen R. and Kruse, Stefan and N{\"u}rnberg, Dirk and Tiedemann, Ralf and Herzschuh, Ulrike}, title = {Sedimentary ancient DNA from the subarctic North Pacific}, series = {Paleoceanography and paleoclimatology}, volume = {36}, journal = {Paleoceanography and paleoclimatology}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2572-4517}, doi = {10.1029/2020PA004091}, pages = {18}, year = {2021}, abstract = {We traced diatom composition and diversity through time using diatom-derived sedimentary ancient DNA (sedaDNA) from eastern continental slope sediments off Kamchatka (North Pacific) by applying a short, diatom-specific marker on 63 samples in a DNA metabarcoding approach. The sequences were assigned to diatoms that are common in the area and characteristic of cold water. SedaDNA allowed us to observe shifts of potential lineages from species of the genus Chaetoceros that can be related to different climatic phases, suggesting that pre-adapted ecotypes might have played a role in the long-term success of species in areas of changing environmental conditions. These sedaDNA results complement our understanding of the long-term history of diatom assemblages and their general relationship to environmental conditions of the past. Sea-ice diatoms (Pauliella taeniata [Grunow] Round \& Basson, Attheya septentrionalis [ostrup] R. M. Crawford and Nitzschia frigida [Grunow]) detected during the late glacial and Younger Dryas are in agreement with previous sea-ice reconstructions. A positive correlation between pennate diatom richness and the sea-ice proxy IP25 suggests that sea ice fosters pennate diatom richness, whereas a negative correlation with June insolation and temperature points to unfavorable conditions during the Holocene. A sharp increase in proportions of freshwater diatoms at similar to 11.1 cal kyr BP implies the influence of terrestrial runoff and coincides with the loss of 42\% of diatom sequence variants. We assume that reduced salinity at this time stabilized vertical stratification which limited the replenishment of nutrients in the euphotic zone.}, language = {en} } @phdthesis{Amen2023, author = {Amen, Rahma}, title = {Adaptive radiation in African weakly electric fish genus Campylomormyrus}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 155}, year = {2023}, abstract = {The African weakly electric fish genus Campylomormyrus includes 15 described species mostly native to the Congo River and its tributaries. They are considered sympatric species, because their distribution area overlaps. These species generate species-specific electric organ discharges (EODs) varying in waveform characteristics, including duration, polarity, and phase number. They exhibit also pronounced divergence in their snout, i.e. the length, thickness, and curvature. The diversifications in these two phenotypical traits (EOD and snout) have been proposed as key factors promoting adaptive radiation in Campylomormyrus. The role of EODs as a pre-zygotic isolation mechanism driving sympatric speciation by promoting assortative mating has been examined using behavioral, genetical, and histological approaches. However, the evolutionary effects of the snout morphology and its link to species divergence have not been closely examined. Hence, the main objective of this study is to investigate the effect of snout morphology diversification and its correlated EOD to better understand their sympatric speciation and evolutionary drivers. Moreover, I aim to utilize the intragenus and intergenus hybrids of Campylomormyrus to better understand trait divergence as well as underlying molecular/genetic mechanisms involved in the radiation scenario. To this end, I utilized three different approaches: feeding behavior analysis, diet assessment, and geometric morphometrics analysis. I performed feeding behavior experiments to evaluate the concept of the phenotype-environment correlation by testing whether Campylomormyrus species show substrate preferences. The behavioral experiments showed that the short snout species exhibits preference to sandy substrate, the long snout species prefers a stone substrate, and the species with intermediate snout size does not exhibit any substrate preference. The experiments suggest that the diverse feeding apparatus in the genus Campylomormyrus may have evolved in adaptation to their microhabitats. I also performed diet assessments of sympatric Campylomormyrus species and a sister genus species (Gnathonemus petersii) with markedly different snout morphologies and EOD using NGS-based DNA metabarcoding of their stomach contents. The diet of each species was documented showing that aquatic insects such as dipterans, coleopterans and trichopterans represent the major diet component. The results showed also that all species are able to exploit diverse food niches in their habitats. However, comparing the diet overlap indices showed that different snout morphologies and the associated divergence in the EOD translated into different prey spectra. These results further support the idea that the EOD could be a 'magic trait' triggering both adaptation and reproductive isolation. Geometric morphometrics method was also used to compare the phenotypical shape traits of the F1 intragenus (Campylomormyrus) and intergenus (Campylomormyrus species and Gnathonemus petersii) hybrids relative to their parents. The hybrids of these species were well separated based on the morphological traits, however the hybrid phenotypic traits were closer to the short-snouted species. In addition, the likelihood that the short snout expressed in the hybrids increases with increasing the genetic distance of the parental species. The results confirmed that additive effects produce intermediate phenotypes in F1-hybrids. It seems, therefore, that morphological shape traits in hybrids, unlike the physiological traits, were not expressed straightforward.}, language = {en} } @article{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Microbiome}, volume = {5}, journal = {Microbiome}, publisher = {BioMed Central}, address = {London}, issn = {2049-2618}, doi = {10.1186/s40168-017-0255-9}, pages = {16}, year = {2017}, abstract = {Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} }