@misc{HartungBenaryWolfetal.2017, author = {Hartung, Niklas and Benary, Uwe and Wolf, Jana and Kofahl, Bente}, title = {Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {886}, issn = {1866-8372}, doi = {10.25932/publishup-43077}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430778}, pages = {18}, year = {2017}, abstract = {Background Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/ β-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/ β-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/ β-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter- and intracellular processes, such as Dkk feedback, diffusion and Wnt/ β-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression.}, language = {en} } @article{HartungBenaryWolfetal.2017, author = {Hartung, Niklas and Benary, Uwe and Wolf, Jana and Kofahl, Bente}, title = {Paracrine and autocrine regulation of gene expression by Wnt-inhibitor Dickkopf in wild-type and mutant hepatocytes}, series = {BMC systems biology}, volume = {11}, journal = {BMC systems biology}, publisher = {BioMed Central}, address = {London}, issn = {1752-0509}, doi = {10.1186/s12918-017-0470-9}, pages = {16}, year = {2017}, abstract = {Background: Cells are able to communicate and coordinate their function within tissues via secreted factors. Aberrant secretion by cancer cells can modulate this intercellular communication, in particular in highly organised tissues such as the liver. Hepatocytes, the major cell type of the liver, secrete Dickkopf (Dkk), which inhibits Wnt/beta-catenin signalling in an autocrine and paracrine manner. Consequently, Dkk modulates the expression of Wnt/beta-catenin target genes. We present a mathematical model that describes the autocrine and paracrine regulation of hepatic gene expression by Dkk under wild-type conditions as well as in the presence of mutant cells. Results: Our spatial model describes the competition of Dkk and Wnt at receptor level, intra-cellular Wnt/beta-catenin signalling, and the regulation of target gene expression for 21 individual hepatocytes. Autocrine and paracrine regulation is mediated through a feedback mechanism via Dkk and Dkk diffusion along the porto-central axis. Along this axis an APC concentration gradient is modelled as experimentally detected in liver. Simulations of mutant cells demonstrate that already a single mutant cell increases overall Dkk concentration. The influence of the mutant cell on gene expression of surrounding wild-type hepatocytes is limited in magnitude and restricted to hepatocytes in close proximity. To explore the underlying molecular mechanisms, we perform a comprehensive analysis of the model parameters such as diffusion coefficient, mutation strength and feedback strength. Conclusions: Our simulations show that Dkk concentration is elevated in the presence of a mutant cell. However, the impact of these elevated Dkk levels on wild-type hepatocytes is confined in space and magnitude. The combination of inter-and intracellular processes, such as Dkk feedback, diffusion and Wnt/beta-catenin signal transduction, allow wild-type hepatocytes to largely maintain their gene expression.}, language = {en} }