@article{SternemannWilke2016, author = {Sternemann, C. and Wilke, Max}, title = {Spectroscopy of low and intermediate Z elements at extreme conditions: in situ studies of Earth materials at pressure and temperature via X-ray Raman scattering}, series = {High pressure research}, volume = {36}, journal = {High pressure research}, publisher = {IOP Publ. Ltd.}, address = {Abingdon}, issn = {0895-7959}, doi = {10.1080/08957959.2016.1198903}, pages = {275 -- 292}, year = {2016}, abstract = {X-ray Raman scattering spectroscopy is an emerging method in the study of low and intermediate Z elements' core-electron excitations at extreme conditions in order to reveal information on local structure and electronic state of matter in situ. We discuss the capabilities of this method to address questions in Earth materials' science and demonstrate its sensitivity to detect changes in the oxidation state, electronic structure, coordination, and spin state. Examples are presented for the study of the oxygen K-, silicon L- and iron M-edges. We assess the application of both temperature and pressure in such investigations exploiting diamond anvil cells in combination with resistive or laser heating which is required to achieve realistic conditions of the Earth's crust, mantle, and core.}, language = {en} } @article{RosaPohlenzdeGrouchyetal.2016, author = {Rosa, A. D. and Pohlenz, Julia and de Grouchy, C. and Cochain, B. and Kono, Y. and Pasternak, S. and Mathon, O. and Irifune, T. and Wilke, Max}, title = {In situ characterization of liquid network structures at high pressure and temperature using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press}, series = {High pressure research}, volume = {36}, journal = {High pressure research}, publisher = {American Geophysical Union}, address = {Abingdon}, issn = {0895-7959}, doi = {10.1080/08957959.2016.1199693}, pages = {332 -- 347}, year = {2016}, abstract = {We review recent progress in studying structural properties of liquids using X-ray absorption spectroscopy coupled with the Paris-Edinburgh press at third-generation synchrotron facilities. This experimental method allows for detecting subtle changes in atomic arrangements of melts over a wide pressure-temperature range. It has been also employed to monitor variations of the local coordination environment of diluted species contained in glasses, liquids and crystalline phases as a function of the pressure and temperature. Such information is of great importance for gaining deeper insights into the physico-chemical properties of liquids at extreme condition, including the understanding of such phenomena as liquid-liquid phase transitions, viscosity drops and various transport properties of geological melts. Here, we describe the experimental approach and discuss its potential in structural characterization on selected scientific highlights. Finally, the current ongoing instrumental developments and future scientific opportunities are discussed.}, language = {en} }