@misc{CohenCampisanoArrowsmithetal.2016, author = {Cohen, Abby and Campisano, Christopher and Arrowsmith, J. Ramon and Asrat, Asfawossen and Behrensmeyer, A. K. and Deino, A. and Feibel, C. and Hill, A. and Johnson, R. and Kingston, J. and Lamb, Henry F. and Lowenstein, T. and Noren, A. and Olago, D. and Owen, Richard Bernhart and Potts, R. and Reed, Kate and Renaut, R. and Sch{\"a}bitz, F. and Tiercelin, J.-J. and Trauth, Martin H. and Wynn, J. and Ivory, S. and Brady, K. and O'Grady, R. and Rodysill, J. and Githiri, J. and Russell, Joellen and Foerster, Verena and Dommain, Ren{\´e} and Rucina, J. S. and Deocampo, D. and Russell, J. and Billingsley, A. and Beck, C. and Dorenbeck, G. and Dullo, L. and Feary, D. and Garello, D. and Gromig, R. and Johnson, T. and Junginger, Annett and Karanja, M. and Kimburi, E. and Mbuthia, A. and McCartney, Tannis and McNulty, E. and Muiruri, V. and Nambiro, E. and Negash, E. W. and Njagi, D. and Wilson, J. N. and Rabideaux, N. and Raub, Timothy and Sier, Mark Jan and Smith, P. and Urban, J. and Warren, M. and Yadeta, M. and Yost, Chad and Zinaye, B.}, title = {The Hominin Sites and Paleolakes Drilling Project}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {611}, doi = {10.25932/publishup-41249}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412498}, pages = {16}, year = {2016}, abstract = {The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.}, language = {en} } @article{WiltingPatelPfestorfetal.2016, author = {Wilting, A. and Patel, R. and Pfestorf, Hans and Kern, C. and Sultan, K. and Ario, A. and Penaloza, F. and Kramer-Schadt, S. and Radchuk, Viktoriia and Foerster, D. W. and Fickel, J{\"o}rns}, title = {Evolutionary history and conservation significance of the Javan leopard Panthera pardus melas}, series = {Journal of zoology : proceedings of the Zoological Society of London}, volume = {299}, journal = {Journal of zoology : proceedings of the Zoological Society of London}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0952-8369}, doi = {10.1111/jzo.12348}, pages = {239 -- 250}, year = {2016}, abstract = {The leopard Panthera pardus is widely distributed across Africa and Asia; however, there is a gap in its natural distribution in Southeast Asia, where it occurs on the mainland and on Java but not on the interjacent island of Sumatra. Several scenarios have been proposed to explain this distribution gap. Here, we complemented an existing dataset of 68 leopard mtDNA sequences from Africa and Asia with mtDNA sequences (NADH5+ ctrl, 724bp) from 19 Javan leopards, and hindcasted leopard distribution to the Pleistocene to gain further insights into the evolutionary history of the Javan leopard. Our data confirmed that Javan leopards are evolutionarily distinct from other Asian leopards, and that they have been present on Java since the Middle Pleistocene. Species distribution projections suggest that Java was likely colonized via a Malaya-Java land bridge that by-passed Sumatra, as suitable conditions for leopards during Pleistocene glacial periods were restricted to northern and western Sumatra. As fossil evidence supports the presence of leopards on Sumatra at the beginning of the Late Pleistocene, our projections are consistent with a scenario involving the extinction of leopards on Sumatra as a consequence of the Toba super volcanic eruption (similar to 74kya). The impact of this eruption was minor on Java, suggesting that leopards managed to survive here. Currently, only a few hundred leopards still live in the wild and only about 50 are managed in captivity. Therefore, this unique and distinctive subspecies requires urgent, concerted conservation efforts, integrating insitu and ex situ conservation management activities in a One Plan Approach to species conservation management.}, language = {en} }