@misc{GuentnerReichMikolajetal.2017, author = {G{\"u}ntner, Andreas and Reich, Marvin and Mikolaj, Michal and Creutzfeldt, Benjamin and Schroeder, Stephan and Wziontek, Hartmut}, title = {Landscape-scale water balance monitoring with an iGrav superconducting gravimeter in a field enclosure}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {663}, issn = {1866-8372}, doi = {10.25932/publishup-41910}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419105}, pages = {16}, year = {2017}, abstract = {In spite of the fundamental role of the landscape water balance for the Earth's water and energy cycles, monitoring the water balance and its components beyond the point scale is notoriously difficult due to the multitude of flow and storage processes and their spatial heterogeneity. Here, we present the first field deployment of an iGrav superconducting gravimeter (SG) in a minimized enclosure for long-term integrative monitoring of water storage changes. Results of the field SG on a grassland site under wet-temperate climate conditions were compared to data provided by a nearby SG located in the controlled environment of an observatory building. The field system proves to provide gravity time series that are similarly precise as those of the observatory SG. At the same time, the field SG is more sensitive to hydrological variations than the observatory SG. We demonstrate that the gravity variations observed by the field setup are almost independent of the depth below the terrain surface where water storage changes occur (contrary to SGs in buildings), and thus the field SG system directly observes the total water storage change, i.e., the water balance, in its surroundings in an integrative way. We provide a framework to single out the water balance components actual evapotranspiration and lateral subsurface discharge from the gravity time series on annual to daily timescales. With about 99 and 85\% of the gravity signal due to local water storage changes originating within a radius of 4000 and 200m around the instrument, respectively, this setup paves the road towards gravimetry as a continuous hydrological field-monitoring technique at the landscape scale.}, language = {en} } @article{SublettSendulaLamadridetal.2019, author = {Sublett, David Matthew and Sendula, Eszter and Lamadrid, Hector and Steele-MacInnis, Matthew and Spiekermann, Georg and Burruss, Robert C. and Bodnar, Robert J.}, title = {Shift in the Raman symmetric stretching band of N-2, CO2, and CH4 as a function of temperature, pressure, and density}, series = {Journal of Raman spectroscopy : JRS}, volume = {51}, journal = {Journal of Raman spectroscopy : JRS}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0377-0486}, doi = {10.1002/jrs.5805}, pages = {555 -- 568}, year = {2019}, abstract = {The Raman spectra of pure N-2, CO2, and CH4 were analyzed over the range 10 to 500 bars and from -160 degrees C to 200 degrees C (N-2), 22 degrees C to 350 degrees C (CO2), and -100 degrees C to 450 degrees C (CH4). At constant temperature, Raman peak position, including the more intense CO2 peak (nu+), decreases (shifts to lower wave number) with increasing pressure for all three gases over the entire pressure and temperature (PT) range studied. At constant pressure, the peak position for CO2 and CH4 increases (shifts to higher wave number) with increasing temperature over the entire PT range studied. In contrast, N-2 first shows an increase in peak position with increasing temperature at constant pressure, followed by a decrease in peak position with increasing temperature. The inflection temperature at which the trend reverses for N-2 is located between 0 degrees C and 50 degrees C at pressures above similar to 50 bars and is pressure dependent. Below similar to 50 bars, the inflection temperature was observed as low as -120 degrees C. The shifts in Raman peak positions with PT are related to relative density changes, which reflect changes in intermolecular attraction and repulsion. A conceptual model relating the Raman spectral properties of N-2, CO2, and CH4 to relative density (volume) changes and attractive and repulsive forces is presented here. Additionally, reduced temperature-dependent densimeters and barometers are presented for each pure component over the respective PT ranges. The Raman spectral behavior of the pure gases as a function of temperature and pressure is assessed to provide a framework for understanding the behavior of each component in multicomponent N-2-CO2-CH4 gas systems in a future study.}, language = {en} } @article{AvetisyanLagoVasishth2020, author = {Avetisyan, Serine and Lago, Sol and Vasishth, Shravan}, title = {Does case marking affect agreement attraction in comprehension?}, series = {Journal of memory and language}, volume = {112}, journal = {Journal of memory and language}, publisher = {Elsevier}, address = {San Diego}, issn = {0749-596X}, doi = {10.1016/j.jml.2020.104087}, pages = {18}, year = {2020}, abstract = {Previous studies have suggested that distinctive case marking on noun phrases reduces attraction effects in production, i.e., the tendency to produce a verb that agrees with a nonsubject noun. An important open question is whether attraction effects are modulated by case information in sentence comprehension. To address this question, we conducted three attraction experiments in Armenian, a language with a rich and productive case system. The experiments showed clear attraction effects, and they also revealed an overall role of case marking such that participants showed faster response and reading times when the nouns in the sentence had different case. However, we found little indication that distinctive case marking modulated attraction effects. We present a theoretical proposal of how case and number information may be used differentially during agreement licensing in comprehension. More generally, this work sheds light on the nature of the retrieval cues deployed when completing morphosyntactic dependencies.}, language = {en} }