@article{AlMashaikhiOswaldAttingeretal.2012, author = {Al-Mashaikhi, K. and Oswald, Sascha Eric and Attinger, Sabine and B{\"u}chel, G. and Kn{\"o}ller, K. and Strauch, G.}, title = {Evaluation of groundwater dynamics and quality in the Najd aquifers located in the Sultanate of Oman}, series = {Environmental earth sciences}, volume = {66}, journal = {Environmental earth sciences}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1866-6280}, doi = {10.1007/s12665-011-1331-2}, pages = {1195 -- 1211}, year = {2012}, abstract = {The Najd, Oman, is located in one of the most arid environments in the world. The groundwater in this region is occurring in four different aquifers A to D of the Hadhramaut Group consisting mainly of different types of limestone and dolomite. The quality of the groundwater is dominated by the major ions sodium, calcium, magnesium, sulphate, and chloride, but the hydrochemical character is varying among the four aquifers. Mineralization within the separate aquifers increases along the groundwater flow direction from south to north-northeast up to high saline sodium-chloride water in aquifer D in the northeast area of the Najd. Environmental isotope analyses of hydrogen and oxygen were conducted to monitor the groundwater dynamics and to evaluate the recharge conditions of groundwater into the Najd aquifers. Results suggest an earlier recharge into these aquifers as well as ongoing recharge takes place in the region down to present day. Mixing of modern and submodern waters was detected by water isotopes in aquifer D in the mountain chain (Jabal) area and along the northern side of the mountain range. In addition, delta H-2 and delta O-18 variations suggest that aquifers A, B, and C are assumed to be connected by faults and fractures, and interaction between the aquifers may occur. Low tritium concentrations support the mixing assumption in the recharge area. The knowledge about the groundwater development is an important factor for the sustainable use of water resources in the Dhofar region.}, language = {en} } @article{TomasFrijiaBoemelburgetal.2016, author = {Tomas, Sara and Frijia, Gianluca and Boemelburg, Esther and Zamagni, Jessica and Perrin, Christine and Mutti, Maria}, title = {Evidence for seagrass meadows and their response to paleoenvironmental changes in the early Eocene (Jafnayn Formation, Wadi Bani Khalid, N Oman)}, series = {Sedimentary geology : international journal of applied and regional sedimentology}, volume = {341}, journal = {Sedimentary geology : international journal of applied and regional sedimentology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0037-0738}, doi = {10.1016/j.sedgeo.2016.05.016}, pages = {189 -- 202}, year = {2016}, abstract = {The recognition and understanding of vegetated habitats in the fossil record are of crucial importance in order to investigate paleoecological responses and indirectly infer climate and sea-level changes. However, the low preservation potential of plants and macroalgae hampers a direct identification of these environments in the geological past. Here we present sedimentological and paleontological evidences as tool to identify the presence of different seagrass-vegetated environments in the shallow marine settings of the lower Eocene jafnayn platform of Oman and their responses to paleoenvironmental changes. The studied lower Eocene deposits consist of well bedded, nodular pacicstones dominated by encrusting acervulinid and alveolinid foraminifera passing upward to an alternance of packstones with echinoids and quartz grains and grainstones rich in Orbitolites, smaller miliolid foraminifera and quartz grains. The presence of seagrass is inferred by the occurrence of encrusting acervulinids and soritid Orbitolites, as well as by their test morphologies together with further sedimentological criteria. The clear shift observed in the faunal assemblages and sedimentary features may be related to a major reorganization of the carbonate system passing from a carbonate platform to a ramp-like platform with increased terrigenous sedimentation. Heterotroph tubular acervulinids and oligotroph alveolinids of the carbonate platform were replaced upward by more heterotroph organisms such as large, discoidal Orbitolites and smaller miliolids, most likely due to enhanced nutrient levels which would have led to a change of phytal substrate, from cylindrical-leaf dominated grasses into flat-leafed ones. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{HansmanRingThomsonetal.2017, author = {Hansman, Reuben J. and Ring, Uwe and Thomson, Stuart N. and den Brok, Bas and Stuebner, Konstanze}, title = {Late Eocene Uplift of the Al Hajar Mountains, Oman, Supported by Stratigraphy and Low-Temperature Thermochronology}, series = {Tectonics}, volume = {36}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004672}, pages = {3081 -- 3109}, year = {2017}, abstract = {Uplift of the Al Hajar Mountains in Oman has been related to either Late Cretaceous ophiolite obduction or the Neogene Zagros collision. To test these hypotheses, the cooling of the central Al Hajar Mountains is constrained by 10 apatite (U-Th)/He (AHe), 15 fission track (AFT), and four zircon (U-Th)/He (ZHe) sample ages. These data show differential cooling between the two major structural culminations of the mountains. In the 3km high Jabal Akhdar culmination AHe single-grain ages range between 392 Ma and 101 Ma (2 sigma errors), AFT ages range from 518 Ma to 324 Ma, and ZHe single-grain ages range from 62 +/- 3Ma to 39 +/- 2 Ma. In the 2 km high Saih Hatat culmination AHe ages range from 26 +/- 4 to 12 +/- 4 Ma, AFT ages from 73 +/- 19Ma to 57 +/- 8 Ma, and ZHe single-grain ages from 81 +/- 4 Ma to 58 +/- 3 Ma. Thermal modeling demonstrates that cooling associated with uplift and erosion initiated at 40 Ma, indicating that uplift occurred 30 Myr after ophiolite obduction and at least 10 Myr before the Zagros collision. Therefore, this uplift cannot be related to either event. We propose that crustal thickening supporting the topography of the Al Hajar Mountains was caused by a slowdown of Makran subduction and that north Oman took up the residual fraction of N-S convergence between Arabia and Eurasia.}, language = {en} } @article{WinterleitnerSchuetzWenzlaffetal.2018, author = {Winterleitner, Gerd and Sch{\"u}tz, F. and Wenzlaff, Christian and Huenges, Ernst}, title = {The impact of reservoir heterogeneities on High-Temperature aquifer thermal energy storage systems}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {74}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Oxford}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2018.02.005}, pages = {150 -- 162}, year = {2018}, abstract = {We conducted a geoscientific feasibility study for the development of a high-temperature thermal aquifer energy storage system (HT-ATES) outside the capital of Muscat, northern Oman. The aquifer storage is part of a solar geothermal cooling project for the sustainable and continuous cooling of office buildings. The main concept is that excess solar energy will be stored in the subsurface through hot water injection and subsequently utilised as auxiliary energy source during peak demand times. The characterisation of aquifer heterogeneities is thus essential to predict subsurface thermal heat plume development and recovery efficiency of the storage system. We considered two aquifer systems as potential storage horizons, (i) a clastic-dominated alluvial fan system where individual channel systems in combination with diagenetic alterations constitute the main heterogeneities and (ii) a carbonate-dominated system represented by a homogenous layer-cake architecture. The feasibility study included a multidisciplinary approach from initial field work, geocellular reservoir modelling to finite element fluid flow and thermal modelling. Our results show that for the HT-ATES system, with a high frequency of injection and production cycles, heat loss mainly occurs due to heterogeneities in the permeability field of the aquifer in combination with buoyancy driven vertical fluid flow. An impermeable cap-rock is needed to keep the heat plume in place. Conductive heat loss is a minor issue. Highly complex heat plume geometries are apparent in the clastic channel system and ATES well planning is challenging due to the complex and interconnected high permeable channels. The carbonate sequence shows uniform plume geometries due to the layer cake architecture of the system and is tentatively more suitable for ATES development. Based on our findings we propose the general concept of HT-ATES traps, incorporating and building on expertise and knowledge from petroleum and reservoir geology regarding reservoir rocks and suitable trap\&seal geometries. The concept can be used as guideline for future high-temperature aquifer storage exploration and development.}, language = {en} }