@phdthesis{Ceulemans2021, author = {Ceulemans, Ruben}, title = {Diversity effects on ecosystem functions of tritrophic food webs}, doi = {10.25932/publishup-50325}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-503259}, school = {Universit{\"a}t Potsdam}, pages = {vii, 166}, year = {2021}, abstract = {There is a general consensus that diverse ecological communities are better equipped to adapt to changes in their environment, but our understanding of the mechanisms by which they do so remains incomplete. Accurately predicting how the global biodiversity crisis affects the functioning of ecosystems, and the services they provide, requires extensive knowledge about these mechanisms. Mathematical models of food webs have been successful in uncovering many aspects of the link between diversity and ecosystem functioning in small food web modules, containing at most two adaptive trophic levels. Meaningful extrapolation of this understanding to the functioning of natural food webs remains difficult, due to the presence of complex interactions that are not always accurately captured by bitrophic descriptions of food webs. In this dissertation, we expand this approach to tritrophic food web models by including the third trophic level. Using a functional trait approach, coexistence of all species is ensured using fitness-balancing trade-offs. For example, the defense-growth trade-off implies that species may be defended against predation, but this defense comes at the cost of a lower maximal growth rate. In these food webs, the functional diversity on a given trophic level can be varied by modifying the trait differences between the species on that level. In the first project, we find that functional diversity promotes high biomass on the top level, which, in turn, leads to a reduction in the temporal variability due to compensatory dynamical patterns governed by the top level. Next, these results are generalized by investigating the average behavior of tritrophic food webs, for wide intervals of all parameters describing species interactions in the food web. We find that the diversity on the top level is most important for determining the biomass and temporal variability of all other trophic levels, and show how biomass is only transferred efficiently to the top level when diversity is high everywhere in the food web. In the third project, we compare the response of a simple food chain against a nutrient pulse perturbation, to that of a food web with diversity on every trophic level. By joint consideration of the resistance, resilience, and elasticity, we uncover that the response is efficiently buffered when biomass on the top level is high, which is facilitated by functional diversity on every trophic level in the food web. Finally, in the fourth project, we show that even in a simple consumer-resource model without any diversity, top-down control on the intermediate level frequently causes the phase difference between the intermediate and basal level to deviate from the quarter-cycle lag rule. By adding a top predator, we show that these deviations become even more likely, and anti-phase cycles are often observed. The combined results of these projects show how the properties of the top trophic level, including its functional diversity, have a decisive influence on the functioning of tritrophic food webs from a mechanistic perspective. Because top species are often among the most vulnerable to extinction, our results emphasize the importance of their conservation in ecosystem management and restoration strategies.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} }