@article{DraganovaRichterFechner2012, author = {Draganova, Nadya and Richter, Philipp and Fechner, Cora}, title = {High-resolution observations of two O VI absorbers at z approximate to 2 toward PKS 1448-232}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {538}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {1}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201116730}, pages = {8}, year = {2012}, abstract = {To explore the ionization conditions in highly-ionized absorbers at high redshift, we study in detail two intervening O vi absorbers at z approximate to 2 toward the quasar PKS 1448-232, based on high (R approximate to 75 000) and intermediate (R approximate to 45 000) resolution optical VLT/UVES spectra. We find that both absorption systems are composed of several narrow subcomponents with typical Civ/O VI Doppler-parameters of b < 10 km s(-1). This implies that the gas temperatures are T < 10(5) K and that the absorbers are photoionized by the UV background. The system at z = 2.1098 represents a simple, isolated O VI absorber that has only two absorption components and is relatively metal-rich (Z similar to 0.6 solar). Ioinization modeling implies that the system is photoionized with O VI, C IV, and H I coexisting in the same gas phase. The second system at z = 2.1660 represents a complicated, multi-component absorption system with eight O VI components spanning almost 300 km s(-1) in radial velocity. The photoionization modeling implies that the metallicity is non-uniform and relatively low (<= 0.1 solar) and that the O VI absorption must arise in a gas phase that differs from that traced by C IV, C III, and H I. Our detailed study of the two O VI systems towards PKS 1448-232 shows that multi-phase, multi-component high-ion absorbers similar to the one at z = 2.1660 can be described by applying a detailed ionization modeling of the various subcomponents to obtain reliable measurements of the physical conditions and the metal abundances in the gas.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2012, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Dalla Vecchia, Claudio and Theuns, Tom}, title = {Absorption signatures of warm-hot gas at low redshift: broad H?i Lya absorbers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {425}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.21545.x}, pages = {1640 -- 1663}, year = {2012}, abstract = {We investigate the physical state of H?i absorbing gas at low redshift (z = 0.25) using a subset of cosmological, hydrodynamic simulations from the OverWhelmingly Large Simulations project, focusing in particular on broad (bHI=40 km s-1) H?i Lya absorbers (BLAs), which are believed to originate in shock-heated gas in the warm-hot intergalactic medium (WHIM). Our fiducial model, which includes radiative cooling by heavy elements and feedback by supernovae and active galactic nuclei, predicts that by z = 0.25 nearly 60?per cent of the gas mass ends up at densities and temperatures characteristic of the WHIM and we find that half of this fraction is due to outflows. The standard H?i observables (distribution of H?i column densities NH?I, distribution of Doppler parameters bHI, bHINH?I correlation) and the BLA line number density predicted by our simulations are in remarkably good agreement with observations. BLAs arise in gas that is hotter, more highly ionized and more enriched than the gas giving rise to typical Lya forest absorbers. The majority of the BLAs arise in warm-hot [log?(T/?K) similar to 5] gas at low (log?? < 1.5) overdensities. On average, thermal broadening accounts for at least 60?per cent of the BLA linewidth, which in turn can be used as a rough indicator of the thermal state of the gas. Detectable BLAs account for only a small fraction of the true baryon content of the WHIM at low redshift. In order to detect the bulk of the mass in this gas phase, a sensitivity at least one order of magnitude better than achieved by current ultraviolet spectrographs is required. We argue that BLAs mostly trace gas that has been shock heated and enriched by outflows and that they therefore provide an important window on a poorly understood feedback process.}, language = {en} } @phdthesis{Klar2012, author = {Klar, Jochen}, title = {A detailed view of filaments and sheets of the warm-hot intergalactic medium}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-58038}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In the context of cosmological structure formation sheets, filaments and eventually halos form due to gravitational instabilities. It is noteworthy, that at all times, the majority of the baryons in the universe does not reside in the dense halos but in the filaments and the sheets of the intergalactic medium. While at higher redshifts of z > 2, these baryons can be detected via the absorption of light (originating from more distant sources) by neutral hydrogen at temperatures of T ~ 10^4 K (the Lyman-alpha forest), at lower redshifts only about 20 \% can be found in this state. The remain (about 50 to 70 \% of the total baryons mass) is unaccounted for by observational means. Numerical simulations predict that these missing baryons could reside in the filaments and sheets of the cosmic web at high temperatures of T = 10^4.5 - 10^7 K, but only at low to intermediate densities, and constitutes the warm-hot intergalactic medium (WHIM). The high temperatures of the WHIM are caused by the formation of shocks and the subsequent shock-heating of the gas. This results in a high degree of ionization and renders the reliable detection of the WHIM a challenging task. Recent high-resolution hydrodynamical simulations indicate that, at redshifts of z ~ 2, filaments are able to provide very massive galaxies with a significant amount of cool gas at temperatures of T ~ 10^4 K. This could have an important impact on the star-formation in those galaxies. It is therefore of principle importance to investigate the particular hydro- and thermodynamical conditions of these large filament structures. Density and temperature profiles, and velocity fields, are expected to leave their special imprint on spectroscopic observations. A potential multiphase structure may act as tracer in observational studies of the WHIM. In the context of cold streams, it is important to explore the processes, which regulate the amount of gas transported by the streams. This includes the time evolution of filaments, as well as possible quenching mechanisms. In this context, the halo mass range in which cold stream accretion occurs is of particular interest. In order to address these questions, we perform particular hydrodynamical simulations of very high resolution, and investigate the formation and evolution of prototype structures representing the typical filaments and sheets of the WHIM. We start with a comprehensive study of the one-dimensional collapse of a sinusoidal density perturbation (pancake formation) and examine the influence of radiative cooling, heating due to an UV background, thermal conduction, and the effect of small-scale perturbations given by the cosmological power spectrum. We use a set of simulations, parametrized by the wave length of the initial perturbation L. For L ~ 2 Mpc/h the collapse leads to shock-confined structures. As a result of radiative cooling and of heating due to an UV background, a relatively cold and dense core forms. With increasing L the core becomes denser and more concentrated. Thermal conduction enhances this trend and may lead to an evaporation of the core at very large L ~ 30 Mpc/h. When extending our simulations into three dimensions, instead of a pancake structure, we obtain a configuration consisting of well-defined sheets, filaments, and a gaseous halo. For L > 4 Mpc/h filaments form, which are fully confined by an accretion shock. As with the one-dimensional pancakes, they exhibit an isothermal core. Thus, our results confirm a multiphase structure, which may generate particular spectral tracers. We find that, after its formation, the core becomes shielded against further infall of gas onto the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in other studies. We show, that the basic structure of these cold streams exists from the very beginning of the collapse process. Further on, the cross section of the streams is constricted by the outwards moving accretion shock of the halo. Thermal conduction leads to a complete evaporation of the cold stream for L > 6 Mpc/h. This corresponds to halos with a total mass higher than M_halo = 10^13 M_sun, and predicts that in more massive halos star-formation can not be sustained by cold streams. Far away from the gaseous halo, the temperature gradients in the filament are not sufficiently strong for thermal conduction to be effective.}, language = {en} }