@phdthesis{Hattermann2005, author = {Hattermann, Fred Fokko}, title = {Integrated modelling of Global Change impacts in the German Elbe River Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6052}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The scope of this study is to investigate the environmental change in the German part of the Elbe river basin, whereby the focus is on two water related problems: having too little water and having water of poor quality. The Elbe region is representative of humid to semi-humid landscapes in central Europe, where water availability during the summer season is the limiting factor for plant growth and crop yields, especially in the loess areas, where the annual precipitation is lower than 500 mm. It is most likely that water quantity problems will accelerate in future, because both the observed and the projected climate trend show an increase in temperature and a decrease in annual precipitation, especially in the summer. Another problem is nutrient pollution of rivers and lakes. In the early 1990s, the Elbe was one of the most heavily polluted rivers in Europe. Even though nutrient emissions from point sources have notably decreased in the basin due to reduction of industrial sources and introduction of new and improved sewage treatment facilities, the diffuse sources of pollution are still not sufficiently controlled. The investigations have been done using the eco-hydrological model SWIM (Soil and Water Integrated Model), which has been embedded in a model framework of climate and agro-economic models. A global scenario of climate and agro-economic change has been regionalized to generate transient climate forcing data and land use boundary conditions for the model. The model was used to transform the climate and land use changes into altered evapotranspiration, groundwater recharge, crop yields and river discharge, and to investigate the development of water quality in the river basin. Particular emphasis was given to assessing the significance of the impacts on the hydrology, taking into account in the analysis the inherent uncertainty of the regional climate change as well as the uncertainty in the results of the model. The average trend of the regional climate change scenario indicates a decrease in mean annual precipitation up to 2055 of about 1.5 \%, but with high uncertainty (covering the range from -15.3 \% to +14.8 \%), and a less uncertain increase in temperature of approximately 1.4 K. The relatively small change in precipitation in conjunction with the change in temperature leads to severe impacts on groundwater recharge and river flow. Increasing temperature induces longer vegetation periods, and the seasonality of the flow regime changes towards longer low flow spells in summer. As a results the water availability will decrease on average of the scenario simulations by approximately 15 \%. The increase in temperatures will improve the growth conditions for temperature limited crops like maize. The uncertainty of the climate trend is particularly high in regions where the change is the highest. The simulation results for the Nuthe subbasin of the Elbe indicate that retention processes in groundwater, wetlands and riparian zones have a high potential to reduce the nitrate concentrations of rivers and lakes in the basin, because they are located at the interface between catchment area and surface water bodies, where they are controlling the diffuse nutrient inputs. The relatively high retention of nitrate in the Nuthe basin is due to the long residence time of water in the subsurface (about 40 years), with good conditions for denitrification, and due to nitrate retention and plant uptake in wetlands and riparian zones. The concluding result of the study is that the natural environment and communities in parts of Central Europe will have considerably lower water resources under scenario conditions. The water quality will improve, but due to the long residence time of water and nutrients in the subsurface, this improvement will be slower in areas where the conditions for nutrient turn-over in the subsurface are poor.}, subject = {Hydrologie}, language = {en} } @article{LohmannTietjenBlaumetal.2012, author = {Lohmann, Dirk and Tietjen, Britta and Blaum, Niels and Joubert, David F. and Jeltsch, Florian}, title = {Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {49}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/j.1365-2664.2012.02157.x}, pages = {814 -- 823}, year = {2012}, abstract = {1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO2 level increase in combination with changes in inter- and intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration.}, language = {en} } @article{HunkeMuellerSchroederEsselbachetal.2015, author = {Hunke, Philip and M{\"u}ller, Eva Nora and Schr{\"o}der-Esselbach, Boris and Zeilhofer, Peter}, title = {The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use}, series = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, volume = {8}, journal = {Ecohydrology : ecosystems, land and water process interactions, ecohydrogeomorphology}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1936-0584}, doi = {10.1002/eco.1573}, pages = {1154 -- 1180}, year = {2015}, abstract = {The Brazilian Cerrado is recognized as one of the most threatened biomes in the world, as the region has experienced a striking change from natural Cerrado vegetation to intense cash crop production. This paper reviews the history of land conversion in the Cerrado and the development of soil properties and water resources under past and ongoing land use. We compared soil and water quality parameters from different land uses considering 80 soil and 18 water studies conducted in different regions across the Cerrado to provide quantitative evidence of soil and water alterations from land use change. Following the conversion of native Cerrado, significant effects on soil pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the sites classified as croplands were nitrogen-fixing soybeans, which are not artificially fertilized with N. In contrast, water quality studies showed nitrogen enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and European Union (EU) water quality limits, which were potentially accompanied by serious health implications. Land use intensification is likely to continue, particularly in regions where less annual rainfall and severe droughts are projected in the northeastern and western Cerrado. Thus, the leaching risk and displacement of agrochemicals are expected to increase, particularly because the current legislation has caused a reduction in riparian vegetation. We conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This study may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado. Copyright (C) 2014 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZimmermannUberZimmermannetal.2015, author = {Zimmermann, Alexander and Uber, Magdalena and Zimmermann, Beate and Levia, Delphis F.}, title = {Predictability of stemflow in a species-rich tropical forest}, series = {Hydrological processes}, volume = {29}, journal = {Hydrological processes}, number = {23}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.10554}, pages = {4947 -- 4956}, year = {2015}, abstract = {Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Although these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species-rich forests is not well known. Many hydrological applications, however, require at least a rough estimate of stemflow volumes based on the characteristics of a forest stand. The need for robust predictions of stemflow motivated us to investigate the relationships between tree characteristics and stemflow volumes in a species-rich tropical forest located in central Panama. Based on a sampling setup consisting of ten rainfall collectors, 300 throughfall samplers and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. Firstly, stemflow represents a minor hydrological component in the studied 1-ha forest patch (1.0\% of cumulated rainfall). Secondly, in the studied species-rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Thirdly, predicting stemflow in species-rich forests based on tree parameters is a difficult task. Although our best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species-rich forests corroborates this finding. Based on these results and considering that for most hydrological applications, stemflow is only one parameter among others to estimate, we advocate using the base model, i.e. the mean of the stemflow data, to quantify stemflow volumes for a given study area. Studies in species-rich forests that wish to obtain predictions of stemflow based on tree parameters probably need to conduct a much more extensive sampling than currently implemented by most studies. Copyright (c) 2015 John Wiley \& Sons, Ltd.}, language = {en} } @phdthesis{Hunke2015, author = {Hunke, Philip Paul}, title = {The Brazilian Cerrado: ecohydrological assessment of water and soil degradation in heavily modified meso-scale catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85110}, school = {Universit{\"a}t Potsdam}, pages = {xi, 124}, year = {2015}, abstract = {The Brazilian Cerrado is recognised as one of the most threatened biomes in the world, as the region has experienced a striking change from natural vegetation to intense cash crop production. The impacts of rapid agricultural expansion on soil and water resources are still poorly understood in the region. Therefore, the overall aim of the thesis is to improve our understanding of the ecohydrological processes causing water and soil degradation in the Brazilian Cerrado. I first present a metaanalysis to provide quantitative evidence and identifying the main impacts of soil and water alterations resulting from land use change. Second, field studies were conducted to (i) examine the effects of land use change on soils of natural cerrado transformed to common croplands and pasture and (ii) indicate how agricultural production affects water quality across a meso-scale catchment. Third, the ecohydrological process-based model SWAT was tested with simple scenario analyses to gain insight into the impacts of land use and climate change on the water cycling in the upper S{\~a}o Louren{\c{c}}o catchment which experienced decreasing discharges in the last 40 years. Soil and water quality parameters from different land uses were extracted from 89 soil and 18 water studies in different regions across the Cerrado. Significant effects on pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the cropland sites were N-fixing soybean cultivations, which are not artificially fertilized with N. By contrast, water quality studies showed N enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and EU water quality limits, which pose serious health risks. My field study revealed that land conversion caused a significant reduction in infiltration rates near the soil surface of pasture (-96 \%) and croplands (-90 \% to -93 \%). Soil aggregate stability was significantly reduced in croplands than in cerrado and pasture. Soybean crops had extremely high extractable P (80 mg kg-1), whereas pasture N levels declined. A snapshot water sampling showed strong seasonality in water quality parameters. Higher temperature, oxi-reduction potential (ORP), NO2-, and very low oxygen concentrations (<5 mg•l-1) and saturation (<60 \%) were recorded during the rainy season. By contrast, remarkably high PO43- concentrations (up to 0.8 mg•l-1) were measured during the dry season. Water quality parameters were affected by agricultural activities at all sampled sub-catchments across the catchment, regardless of stream characteristic. Direct NO3- leaching appeared to play a minor role; however, water quality is affected by topsoil fertiliser inputs with impact on small low order streams and larger rivers. Land conversion leaving cropland soils more susceptible to surface erosion by increased overland flow events. In a third study, the field data were used to parameterise SWAT. The model was tested with different input data and calibrated in SWAT-CUP using the SUFI-2 algorithm. The model was judged reliable to simulate the water balance in the Cerrado. A complete cerrado, pasture and cropland cover was used to analyse the impact of land use on water cycling as well as climate change projections (2039-2058) according to the projections of the RCP 8.5 scenario. The actual evapotranspiration (ET) for the cropland scenario was higher compared to the cerrado cover (+100 mm a-1). Land use change scenarios confirmed that deforestation caused higher annual ET rates explaining partly the trend of decreased streamflow. Taking all climate change scenarios into account, the most likely effect is a prolongation of the dry season (by about one month), with higher peak flows in the rainy season. Consequently, potential threats for crop production with lower soil moisture and increased erosion and sediment transport during the rainy season are likely and should be considered in adaption plans. From the three studies of the thesis I conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available for the vast biome, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This thesis may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado in the future.}, language = {en} } @article{IrobBlaumBaldaufetal.2022, author = {Irob, Katja and Blaum, Niels and Baldauf, Selina and Kerger, Leon and Strohbach, Ben and Kanduvarisa, Angelina and Lohmann, Dirk and Tietjen, Britta}, title = {Browsing herbivores improve the state and functioning of savannas}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8715}, pages = {19}, year = {2022}, abstract = {Changing climatic conditions and unsustainable land use are major threats to savannas worldwide. Historically, many African savannas were used intensively for livestock grazing, which contributed to widespread patterns of bush encroachment across savanna systems. To reverse bush encroachment, it has been proposed to change the cattle-dominated land use to one dominated by comparatively specialized browsers and usually native herbivores. However, the consequences for ecosystem properties and processes remain largely unclear. We used the ecohydrological, spatially explicit model EcoHyD to assess the impacts of two contrasting, herbivore land-use strategies on a Namibian savanna: grazer- versus browser-dominated herbivore communities. We varied the densities of grazers and browsers and determined the resulting composition and diversity of the plant community, total vegetation cover, soil moisture, and water use by plants. Our results showed that plant types that are less palatable to herbivores were best adapted to grazing or browsing animals in all simulated densities. Also, plant types that had a competitive advantage under limited water availability were among the dominant ones irrespective of land-use scenario. Overall, the results were in line with our expectations: under high grazer densities, we found heavy bush encroachment and the loss of the perennial grass matrix. Importantly, regardless of the density of browsers, grass cover and plant functional diversity were significantly higher in browsing scenarios. Browsing herbivores increased grass cover, and the higher total cover in turn improved water uptake by plants overall. We concluded that, in contrast to grazing-dominated land-use strategies, land-use strategies dominated by browsing herbivores, even at high herbivore densities, sustain diverse vegetation communities with high cover of perennial grasses, resulting in lower erosion risk and bolstering ecosystem services.}, language = {en} }