@phdthesis{Trost2014, author = {Trost, Gerda}, title = {Poly(A) Polymerase 1 (PAPS1) influences organ size and pathogen response in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72345}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. This thesis shows that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A moderate loss-of-function mutant in PAPS1 leads to increase in floral organ size, whereas leaf size is reduced. A strong loss-of-function mutation causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. Additionally, opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia whereas the reduced leaf size is due to an ectopic pathogen response. This constitutive immune response leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). Immune responses are accompanied by intracellular redox changes. Consistent with this, the redox-status of the chloroplast is altered in paps1-1 mutants. The molecular effects of the paps1-1 mutation were analysed using an RNA sequencing approach that distinguishes between long- and short tailed mRNA. The results shown here suggest the existence of an additional layer of regulation in plants and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs.}, language = {en} }