@article{GeigerReitenbachHenscheletal.2021, author = {Geiger, Christina and Reitenbach, Julija and Henschel, Cristiane and Kreuzer, Lucas and Widmann, Tobias and Wang, Peixi and Mangiapia, Gaetano and Moulin, Jean-Fran{\c{c}}ois and Papadakis, Christine M. and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter}, title = {Ternary nanoswitches realized with multiresponsive PMMA-b-PNIPMAM films in mixed water/acetone vapor atmospheres}, series = {Advanced engineering materials}, volume = {23}, journal = {Advanced engineering materials}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.202100191}, pages = {12}, year = {2021}, abstract = {To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co-nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol\%/10 vol\%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone-exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions "off," "on," and "standby." For understanding the switching process, time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier-transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build-up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character.}, language = {en} } @article{CaprioglioStolterfohtWolffetal.2019, author = {Caprioglio, Pietro and Stolterfoht, Martin and Wolff, Christian Michael and Unold, Thomas and Rech, Bernd and Albrecht, Steve and Neher, Dieter}, title = {On the relation between the open-circuit voltage and quasi-fermi level splitting in efficient perovskite solar cells}, series = {advanced energy materials}, volume = {9}, journal = {advanced energy materials}, number = {33}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201901631}, pages = {10}, year = {2019}, abstract = {Today's perovskite solar cells (PSCs) are limited mainly by their open-circuit voltage (VOC) due to nonradiative recombination. Therefore, a comprehensive understanding of the relevant recombination pathways is needed. Here, intensity-dependent measurements of the quasi-Fermi level splitting (QFLS) and of the VOC on the very same devices, including pin-type PSCs with efficiencies above 20\%, are performed. It is found that the QFLS in the perovskite lies significantly below its radiative limit for all intensities but also that the VOC is generally lower than the QFLS, violating one main assumption of the Shockley-Queisser theory. This has far-reaching implications for the applicability of some well-established techniques, which use the VOC as a measure of the carrier densities in the absorber. By performing drift-diffusion simulations, the intensity dependence of the QFLS, the QFLS-VOC offset and the ideality factor are consistently explained by trap-assisted recombination and energetic misalignment at the interfaces. Additionally, it is found that the saturation of the VOC at high intensities is caused by insufficient contact selectivity while heating effects are of minor importance. It is concluded that the analysis of the VOC does not provide reliable conclusions of the recombination pathways and that the knowledge of the QFLS-VOC relation is of great importance.}, language = {en} } @article{WuennemannNoyongKreuelsetal.2016, author = {Wuennemann, Patrick and Noyong, Michael and Kreuels, Klaus and Bruex, Roland and Gordiichuk, Pavlo and van Rijn, Patrick and Plamper, Felix A. and Simon, Ulrich and B{\"o}ker, Alexander}, title = {Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201600287}, pages = {1446 -- 1452}, year = {2016}, abstract = {Microstructured hydrogel allows for a new template-guided method to obtain conductive nanowire arrays on a large scale. To generate the template, an imprinting process is used in order to synthesize the hydrogel directly into the grooves of wrinkled polydimethylsiloxane (PDMS). The resulting poly(N-vinylimidazole)-based hydrogel is defined by the PDMS stamp in pattern and size. Subsequently, tetrachloroaurate(III) ions from aqueous solution are coordinated within the humps of the N-vinylimidazole-containing polymer template and reduced by air plasma. After reduction and development of the gold, to achieve conductive wires, the extension perpendicular to the long axis (width) of the gold strings is considerably reduced compared to the dimension of the parental hydrogel wrinkles (from approximate to 1 mu m down to 200-300 nm). At the same time, the wire-to-wire distance and the overall length of the wires is preserved. The PDMS templates and hydrogel structures are analyzed with scanning force microscopy (SFM) and the gold structures via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy. The conductivity measurements of the gold nanowires are performed in situ in the SEM, showing highly conductive gold leads. Hence, this method can be regarded as a facile nonlithographic top-down approach from micrometer-sized structures to nanometer-sized features.}, language = {en} } @article{FudickarLinker2006, author = {Fudickar, Werner and Linker, Torsten}, title = {Imaging by sensitized oxygenations of photochromic anthracene films}, series = {Chemistry - a European journal}, volume = {12}, journal = {Chemistry - a European journal}, publisher = {WILEY-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.200600387}, pages = {9276 -- 9283}, year = {2006}, abstract = {The aliphatic anthracene compound 1 and the oligomeric anthracene 2 were synthesized. Thin films of 1 and 2 mixed with the sensitizers tetraphenylporphyrin (TPP) and methylene blue (MB) were irradiated with visible light in air. Upon formation of singlet oxygen, the anthracene units were converted quantitatively to the corresponding endoperoxides. Heating of the irradiated samples afforded the parent anthracenes with high yields. Here, we demonstrate that the kinetics and reversibility of this reaction strongly depend on the microenvironment of the anthracene groups in the two compounds. The photooxidation of thin films of I is accompanied by interesting changes in the morphology of the film and allows the first application of 1 as a nondestructive negative-tone photo-resist for lithography and as an oxidizing ink. The morphology of 2 remained unchanged after photooxidation as a result of the stabilizing oligomer backbone. This stabilizing effect significantly improves the photochromic performance of 2. The reversibility of the photooxidation is very high (> 90\%) for oligomeric films of 2 after several cycles of irradiation and beating. Decomposition of the anthracene and a loss of the activity of the sensitizer diminish slightly the performance of the monomeric species.}, language = {en} } @article{SchulzeBettBivouretal.2020, author = {Schulze, Patricia S. C. and Bett, Alexander J. and Bivour, Martin and Caprioglio, Pietro and Gerspacher, Fabian M. and Kabakl{\i}, {\"O}zde Ş. and Richter, Armin and Stolterfoht, Martin and Zhang, Qinxin and Neher, Dieter and Hermle, Martin and Hillebrecht, Harald and Glunz, Stefan W. and Goldschmidt, Jan Christoph}, title = {25.1\% high-efficiency monolithic perovskite silicon tandem solar cell with a high bandgap perovskite absorber}, series = {Solar RRL}, volume = {4}, journal = {Solar RRL}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {10}, year = {2020}, abstract = {Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 eV in planar p-i-n tandem configuration. A methylammonium-free FA(0.75)Cs(0.25)Pb(I0.8Br0.2)(3) perovskite with high Cs content is investigated for improved stability. A 10\% molarity increase to 1.1 m of the perovskite precursor solution results in approximate to 75 nm thicker absorber layers and 0.7 mA cm(-2) higher short-circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80\% and up to 25.1\% certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3\% (absolute) over 5 months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30\% tandem efficiency in the near future.}, language = {en} }