@article{SchmidtNendelFunketal.2019, author = {Schmidt, Martin and Nendel, Claas and Funk, Roger and Mitchell, Matthew G. E. and Lischeid, Gunnar}, title = {Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes}, series = {Agriculture}, volume = {9}, journal = {Agriculture}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2077-0472}, doi = {10.3390/agriculture9010006}, pages = {15}, year = {2019}, abstract = {In crop modeling and yield predictions, the heterogeneity of agricultural landscapes is usually not accounted for. This heterogeneity often arises from landscape elements like forests, hedges, or single trees and shrubs that cast shadows. Shading from forested areas or shrubs has effects on transpiration, temperature, and soil moisture, all of which affect the crop yield in the adjacent arable land. Transitional gradients of solar irradiance can be described as a function of the distance to the zero line (edge), the cardinal direction, and the height of trees. The magnitude of yield reduction in transition zones is highly influenced by solar irradiance-a factor that is not yet implemented in crop growth models on a landscape level. We present a spatially explicit model for shading caused by forested areas, in agricultural landscapes. With increasing distance to forest, solar irradiance and yield increase. Our model predicts that the shading effect from the forested areas occurs up to 15 m from the forest edge, for the simulated wheat yields, and up to 30 m, for simulated maize. Moreover, we estimated the spatial extent of transition zones, to calculate the regional yield reduction caused by shading of the forest edges, which amounted to 5\% to 8\% in an exemplary region.}, language = {en} } @article{GeversHoyeToppingetal.2011, author = {Gevers, Jana and Hoye, Toke Thomas and Topping, Chris John and Glemnitz, Michael and Schroeder, Boris}, title = {Biodiversity and the mitigation of climate change through bioenergy impacts of increased maize cultivation on farmland wildlife}, series = {Global change biology : Bioenergy}, volume = {3}, journal = {Global change biology : Bioenergy}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-1693}, doi = {10.1111/j.1757-1707.2011.01104.x}, pages = {472 -- 482}, year = {2011}, abstract = {The public promotion of renewable energies is expected to increase the number of biogas plants and stimulate energy crops cultivation (e. g. maize) in Germany. In order to assess the indirect effects of the resulting land-use changes on biodiversity, we developed six land-use scenarios and simulated the responses of six farmland wildlife species with the spatially explicit agent-based model system ALMaSS. The scenarios differed in composition and spatial configuration of arable crops. We implemented scenarios where maize for energy production replaced 15\% and 30\% of the area covered by other cash crops. Biogas maize farms were either randomly distributed or located within small or large aggregation clusters. The animal species investigated were skylark (Alauda arvensis), grey partridge (Perdix perdix), European brown hare (Lepus europaeus), field vole (Microtus agrestis), a linyphiid spider (Erigone atra) and a carabid beetle (Bembidion lampros). The changes in crop composition had a negative effect on the population sizes of skylark, partridge and hare and a positive effect on the population sizes of spider and beetle and no effect on the population size of vole. An aggregated cultivation of maize amplified these effects for skylark. Species responses to changes in the crop composition were consistent across three differently structured landscapes. Our work suggests that with the compliance to some recommendations, negative effects of biogas-related land-use change on the populations of the six representative farmland species can largely be avoided.}, language = {en} }