@phdthesis{Heim2005, author = {Heim, Birgit}, title = {Qualitative and quantitative analyses of Lake Baikal's surface-waters using ocean colour satellite data (SeaWiFS)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7182}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {One of the most difficult issues when dealing with optical water remote-sensing is its acceptance as a useful application for environmental research. This problem is, on the one hand, concerned with the optical complexity and variability of the investigated natural media, and therefore the question arises as to the plausibility of the parameters derived from remote-sensing techniques. Detailed knowledge about the regional bio- and chemico-optical properties is required for such studies, however such information is seldom available for the sites of interest. On the other hand, the primary advantage of remote-sensing information, which is the provision of a spatial overview, may not be exploited fully by the disciplines that would benefit most from such information. It is often seen in a variety of disciplines that scientists have been primarily trained to look at discrete data sets, and therefore have no experience of incorporating information dealing with spatial heterogeneity. In this thesis, the opportunity was made available to assess the potential of Ocean Colour data to provide spatial and seasonal information about the surface waters of Lake Baikal (Siberia). While discrete limnological field data is available, the spatial extension of Lake Baikal is enormous (ca. 600 km), while the field data are limited to selected sites and expedition time windows. Therefore, this remote-sensing investigation aimed to support a multi-disciplinary limnological investigation within the framework of the paleoclimate EU-project 'High Resolution CONTINENTal Paleoclimate Record in Lake Baikal, Siberia (CONTINENT)' using spatial and seasonal information from the SeaWiFS satellite (NASA). From this, the SeaWiFS study evolved to become the first efficient bio-optical satellite study of Lake Baikal. During the course of three years, field work including spectral field measurements and water sampling, was carried out at Lake Baikal in Southern Siberia, and at the Mecklenburg and Brandenburg lake districts in Germany. The first step in processing the SeaWiFS satellite data involved adapting the SeaDAS (NASA) atmospheric-correction processing to match as close as possible the specific conditions of Lake Baikal. Next, various Chl-a algorithms were tested on the atmospherically-corrected optimized SeaWiFS data set (years 2001 to 2002), comparing the CONTINENT pigment ground-truth data with the Chl-a concentrations derived from the satellite data. This showed the high performance of the global Chl-a products OC2 and OC4 for the oligotrophic, transparent waters (bio-optical Case 1) of Lake Baikal. However, considerable Chl-a overestimation prevailed in bio-optical Case 2 areas for the case of discharge events. High-organic terrigenous input into Lake Baikal could be traced and information extracted using the SeaWiFS spectral data. Suspended Particulate Matter (SPM) was quantified by the regression of the SeaDAS attenuation coefficient as the optical parameter with SPM field data. Finally, the Chl-a and terrigenous input maps derived from the remote sensing data were used to assist with analyzing the relationships between the various discrete data obtained during the CONTINENT field work. Hence, plausible spatial and seasonal information describing autochthonous and allochthonous material in Lake Baikal could be provided by satellite data.Lake Baikal, with its bio-optical complexity and its different areas of Case 1 and Case 2 waters, is a very interesting case study for Ocean Colour analyses. Proposals for future Ocean Colour studies of Lake Baikal are discussed, including which bio-optical parameters for analytical models still need to be clarified by field investigations.}, subject = {Baikalsee}, language = {en} } @phdthesis{Milewski2020, author = {Milewski, Robert}, title = {Potential of optical remote sensing for the analysis of salt pan environments}, doi = {10.25932/publishup-47373}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-473732}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2020}, abstract = {Salt pans also termed playas are common landscape features of hydrologically closed basins in arid and semiarid zones, where evaporation significantly exceeds the local precipitation. The analysis and monitoring of salt pan environments is important for the evaluation of current and future impact of these landscape features. Locally, salt pans have importance for the ecosystem, wildlife and human health, and through dust emissions they influence the climate on regional and global scales. Increasing economic exploitation of these environments in the last years, e.g. by brine extraction for raw materials, as well as climate change severely affect the water, material and energy balance of these systems. Optical remote sensing has the potential to characterise salt pan environments and to increase the understanding of processes in playa basins, as well as to assess wider impacts and feedbacks that exist between climate forcing and human intervention in their regions. Remote sensing techniques can provide information for extensive regions on a high temporal basis compared to traditional field samples and ground observations. Specifically, for salt pans that are often challenging to study because of their large size, remote location, and limited accessibility due to missing infrastructure and ephemeral flooding. Furthermore, the availability of current and upcoming hyperspectral remote sensing data opened the opportunity for the analyses of the complex reflectance signatures that relate to the mineralogical mixtures found in the salt pan sediments. However, these new advances in sensor technology, as well as increased data availability currently have not been fully explored for the study of salt pan environments. The potential of new sensors needs to be assessed and state of the art methods need to be adapted and improved to provide reliable information for in depth analysis of processes and characterisation of the recent condition, as well as to support long-term monitoring and to evaluate environmental impacts of changing climate and anthropogenic activity. This thesis provides an assessment of the capabilities of optical remote sensing for the study of salt pan environments that combines the information of hyperspectral data with the increased temporal coverage of multispectral observations for a more complete understanding of spatial and temporal complexity of salt pan environments using the Omongwa salt pan located in the south-west Kalahari as a test site. In particular, hyperspectral data are used for unmixing of the mineralogical surface composition, spectral feature-based modelling for quantification of main crust components, as well as time-series based classification of multispectral data for the assessment of the long-term dynamic and the analysis of the seasonal process regime. The results show that the surface of the Omongwa pan can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types can be related to different zones of surface dynamic as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. Using current hyperspectral imagery, as well as simulated data of upcoming sensors, robust quantification of the gypsum component could be derived. For the test site the results further indicate that the crust dynamic is mainly driven by flooding events in the wet season, but it is also influenced by temperature and aeolian activity in the dry season. Overall, the scientific outcomes show that optical remote sensing can provide a wide range of information helpful for the study of salt pan environments. The thesis also highlights that remote sensing approaches are most relevant, when they are adapted to the specific site conditions and research scenario and that upcoming sensors will increase the potential for mineralogical, sedimentological and geomorphological analysis, and will improve the monitoring capabilities with increased data availability.}, language = {en} } @phdthesis{Grosse2005, author = {Grosse, Guido}, title = {Characterisation and evolution of periglacial landscapes in Northern Siberia during the Late Quaternary : remote sensing and GIS studies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5544}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {About 24 \% of the land surface in the northern hemisphere are underlayed by permafrost in various states. Permafrost aggradation occurs under special environmental conditions with overall low annual precipitation rates and very low mean annual temperatures. Because the general permafrost occurrence is mainly driven by large-scale climatic conditions, the distribution of permafrost deposits can be considered as an important climate indicator. The region with the most extensive continuous permafrost is Siberia. In northeast Siberia, the ice- and organic-rich permafrost deposits of the Ice Complex are widely distributed. These deposits consist mostly of silty to fine-grained sandy sediments that were accumulated during the Late Pleistocene in an extensive plain on the then subaerial Laptev Sea shelf. One important precondition for the Ice Complex sedimentation was, that the Laptev Sea shelf was not glaciated during the Late Pleistocene, resulting in a mostly continuous accumulation of permafrost sediments for at least this period. This shelf landscape became inundated and eroded in large parts by the Holocene marine transgression after the Last Glacial Maximum. Remnants of this landscape are preserved only in the present day coastal areas. Because the Ice Complex deposits contain a wide variety of palaeo-environmental proxies, it is an excellent palaeo-climate archive for the Late Quaternary in the region. Furthermore, the ice-rich Ice Complex deposits are sensible to climatic change, i.e. climate warming. Because of the large-scale climatic changes at the transition from the Pleistocene to the Holocene, the Ice Complex was subject to extensive thermokarst processes since the Early Holocene. Permafrost deposits are not only an environmental indicator, but also an important climate factor. Tundra wetlands, which have developed in environments with aggrading permafrost, are considered a net sink for carbon, as organic matter is stored in peat or is syn-sedimentary frozen with permafrost aggradation. Contrary, the Holocene thermokarst development resulted in permafrost degradation and thus the release of formerly stored organic carbon. Modern tundra wetlands are also considered an important source for the climate-driving gas methane, originating mainly from microbial activity in the seasonal active layer. Most scenarios for future global climate development predict a strong warming trend especially in the Arctic. Consequently, for the understanding of how permafrost deposits will react and contribute to such scenarios, it is necessary to investigate and evaluate ice-rich permafrost deposits like the widespread Ice Complex as climate indicator and climate factor during the Late Quaternary. Such investigations are a pre-condition for the precise modelling of future developments in permafrost distribution and the influence of permafrost degradation on global climate. The focus of this work, which was conducted within the frame of the multi-disciplinary joint German-Russian research projects "Laptev Sea 2000" (1998-2002) and "Dynamics of Permafrost" (2003-2005), was twofold. First, the possibilities of using remote sensing and terrain modelling techniques for the observation of periglacial landscapes in Northeast Siberia in their present state was evaluated and applied to key sites in the Laptev Sea coastal lowlands. The key sites were situated in the eastern Laptev Sea (Bykovsky Peninsula and Khorogor Valley) and the western Laptev Sea (Cape Mamontovy Klyk region). For this task, techniques using CORONA satellite imagery, Landsat-7 satellite imagery, and digital elevation models were developed for the mapping of periglacial structures, which are especially indicative of permafrost degradation. The major goals were to quantify the extent of permafrost degradation structures and their distribution in the investigated key areas, and to establish techniques, which can be used also for the investigation of other regions with thermokarst occurrence. Geographical information systems were employed for the mapping, the spatial analysis, and the enhancement of classification results by rule-based stratification. The results from the key sites show, that thermokarst, and related processes and structures, completely re-shaped the former accumulation plain to a strongly degraded landscape, which is characterised by extensive deep depressions and erosional remnants of the Late Pleistocene surface. As a results of this rapid process, which in large parts happened within a short period during the Early Holocene, the hydrological and sedimentological regime was completely changed on a large scale. These events resulted also in a release of large amounts of organic carbon. Thermokarst is now the major component in the modern periglacial landscapes in terms of spatial extent, but also in its influence on hydrology, sedimentation and the development of vegetation assemblages. Second, the possibilities of using remote sensing and terrain modelling as a supplementary tool for palaeo-environmental reconstructions in the investigated regions were explored. For this task additionally a comprehensive cryolithological field database was developed for the Bykovsky Peninsula and the Khorogor Valley, which contains previously published data from boreholes, outcrops sections, subsurface samples, and subsurface samples, as well as additional own field data. The period covered by this database is mainly the Late Pleistocene and the Holocene, but also the basal deposits of the sedimentary sequence, interpreted as Pliocene to Early Pleistocene, are contained. Remote sensing was applied for the observation of periglacial strucures, which then were successfully related to distinct landscape development stages or time intervals in the investigation area. Terrain modelling was used for providing a general context of the landscape development. Finally, a scheme was developed describing mainly the Late Quaternary landscape evolution in this area. A major finding was the possibility of connecting periglacial surface structures to distinct landscape development stages, and thus use them as additional palaeo-environmental indicator together with other proxies for area-related palaeo-environmental reconstructions. In the landscape evolution scheme, i.e. of the genesis of the Late Pleistocene Ice Complex and the Holocene thermokarst development, some new aspects are presented in terms of sediment source and general sedimentation conditions. This findings apply also for other sites in the Laptev Sea region.}, subject = {Dauerfrostboden}, language = {en} }