@article{WangFritzschBernardingetal.2013, author = {Wang, Jing and Fritzsch, Claire and Bernarding, Johannes and Holtze, Susanne and Mauritz, Karl-Heinz and Brunetti, Maddalena and Dohle, Christian}, title = {A comparison of neural mechanisms in mirror therapy and movement observation therapy}, series = {Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine}, volume = {45}, journal = {Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine}, number = {4}, publisher = {Foundation for Rehabilitation Information}, address = {Uppsala}, issn = {1650-1977}, doi = {10.2340/16501977-1127}, pages = {410 -- 413}, year = {2013}, abstract = {Objective: To compare lateralized cerebral activations elicited during self-initiated movement mirroring and observation of movements. Subjects: A total of 15 right-handed healthy subjects, age range 22-56 years. Methods: Functional imaging study comparing movement mirroring with movement observation, in both hands, in an otherwise identical setting. Imaging data were analysed using statistical parametric mapping software, with significance threshold set at p<0.01 (false discovery rate) and a minimum cluster size of 20 voxels. Results: Movement mirroring induced additional activation in primary and higher-order visual areas strictly contralateral to the limb seen by the subject. There was no significant difference of brain activity when comparing movement observation of somebody else's right hand with left hand. Conclusion: Lateralized cerebral activations are elicited by inversion of visual feedback (movement mirroring), but not by movement observation.}, language = {en} } @misc{vandeKootSilvaFelseretal., author = {van de Koot, Hans and Silva, Renita and Felser, Claudia and Sato, Mikako}, title = {Does Dutch a-scrambling involve movement?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-398566}, pages = {38}, abstract = {The present study focuses on A-scrambling in Dutch, a local word-order alternation that typically signals the discourse-anaphoric status of the scrambled constituent. We use cross-modal priming to investigate whether an A-scrambled direct object gives rise to antecedent reactivation effects in the position where a movement theory would postulate a trace. Our results indicate that this is not the case, thereby providing support for a base-generation analysis of A-scrambling in Dutch.}, language = {en} } @article{vandeKootSilvaFelseretal.2015, author = {van de Koot, Hans and Silva, Renita and Felser, Claudia and Sato, Mikako}, title = {Does Dutch a-scrambling involve movement? Evidence from antecedent priming}, series = {The linguistic review}, volume = {32}, journal = {The linguistic review}, number = {4}, publisher = {De Gruyter Mouton}, address = {Berlin}, issn = {0167-6318}, doi = {10.1515/tlr-2015-0010}, pages = {739 -- 776}, year = {2015}, abstract = {The present study focuses on A-scrambling in Dutch, a local word-order alternation that typically signals the discourse-anaphoric status of the scrambled constituent. We use cross-modal priming to investigate whether an A-scrambled direct object gives rise to antecedent reactivation effects in the position where a movement theory would postulate a trace. Our results indicate that this is not the case, thereby providing support for a base-generation analysis of A-scrambling in Dutch.}, language = {en} } @misc{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52403}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-524034}, pages = {24}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{RamachandranSinghRamirezCampilloetal.2021, author = {Ramachandran, Akhilesh Kumar and Singh, Utkarsh and Ramirez-Campillo, Rodrigo and Clemente, Filipe Manuel and Afonso, Jos{\´e} and Granacher, Urs}, title = {Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review With Meta-Analysis / Effects of plyometric-jump training on balance performance in healthy individuals across the lifespan: A systematic review with meta-analysisist}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, pages = {22}, year = {2021}, abstract = {Postural balance represents a fundamental movement skill for the successful performance of everyday and sport-related activities. There is ample evidence on the effectiveness of balance training on balance performance in athletic and non-athletic population. However, less is known on potential transfer effects of other training types, such as plyometric jump training (PJT) on measures of balance. Given that PJT is a highly dynamic exercise mode with various forms of jump-landing tasks, high levels of postural control are needed to successfully perform PJT exercises. Accordingly, PJT has the potential to not only improve measures of muscle strength and power but also balance. To systematically review and synthetize evidence from randomized and non-randomized controlled trials regarding the effects of PJT on measures of balance in apparently healthy participants. Systematic literature searches were performed in the electronic databases PubMed, Web of Science, and SCOPUS. A PICOS approach was applied to define inclusion criteria, (i) apparently healthy participants, with no restrictions on their fitness level, sex, or age, (ii) a PJT program, (iii) active controls (any sport-related activity) or specific active controls (a specific exercise type such as balance training), (iv) assessment of dynamic, static balance pre- and post-PJT, (v) randomized controlled trials and controlled trials. The methodological quality of studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. This meta-analysis was computed using the inverse variance random-effects model. The significance level was set at p <0.05. The initial search retrieved 8,251 plus 23 records identified through other sources. Forty-two articles met our inclusion criteria for qualitative and 38 for quantitative analysis (1,806 participants [990 males, 816 females], age range 9-63 years). PJT interventions lasted between 4 and 36 weeks. The median PEDro score was 6 and no study had low methodological quality (≤3). The analysis revealed significant small effects of PJT on overall (dynamic and static) balance (ES = 0.46; 95\% CI = 0.32-0.61; p < 0.001), dynamic (e.g., Y-balance test) balance (ES = 0.50; 95\% CI = 0.30-0.71; p < 0.001), and static (e.g., flamingo balance test) balance (ES = 0.49; 95\% CI = 0.31-0.67; p < 0.001). The moderator analyses revealed that sex and/or age did not moderate balance performance outcomes. When PJT was compared to specific active controls (i.e., participants undergoing balance training, whole body vibration training, resistance training), both PJT and alternative training methods showed similar effects on overall (dynamic and static) balance (p = 0.534). Specifically, when PJT was compared to balance training, both training types showed similar effects on overall (dynamic and static) balance (p = 0.514). Conclusion: Compared to active controls, PJT showed small effects on overall balance, dynamic and static balance. Additionally, PJT produced similar balance improvements compared to other training types (i.e., balance training). Although PJT is widely used in athletic and recreational sport settings to improve athletes' physical fitness (e.g., jumping; sprinting), our systematic review with meta-analysis is novel in as much as it indicates that PJT also improves balance performance. The observed PJT-related balance enhancements were irrespective of sex and participants' age. Therefore, PJT appears to be an adequate training regime to improve balance in both, athletic and recreational settings.}, language = {en} } @article{SinghKushwahSinghetal.2022, author = {Singh, Gaurav and Kushwah, Gaurav Singh and Singh, Tanvi and Thapa, Rohit Kumar and Granacher, Urs and Ramirez-Campillo, Rodrigo}, title = {Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males}, series = {Journal of sports science \& medicine}, volume = {21}, journal = {Journal of sports science \& medicine}, number = {2}, publisher = {Department of Sports Medicine, Medical Faculty of Uludag University}, address = {Bursa}, issn = {1303-2968}, doi = {10.52082/jssm.2022.277}, pages = {277 -- 286}, year = {2022}, abstract = {This study aimed at examining the effects of nine weeks of sand-based plyometric jump training (PJT) combined with endurance running on either outdoor or treadmill surface on measures of physical fitness. Male participants (age, 20.1 +/- 1.7 years) were randomly assigned to a sand-based PJT combined with endurance running on outdoor surface (OT, n = 25) or treadmill surface (TT, n = 25). The endurance miming intervention comprised a mixed training method, i.e., long slow distance, tempo, and interval running drills. A control group was additionally included in this study (CG, n = 25). Participants in CG followed their regular physical activity as OT and TT but did not receive any specific intervention. Individuals were assessed for their 50-m linear sprint time, standing long jump (SLJ) distance, cardiorespiratory fitness (i.e., Cooper test), forced vital capacity (FVC), calf girth, and resting heart rate (RHR). A three (groups: OT, TT, CG) by two (time: pre, post) ANOVA for repeated measures was used to analyze the exercise-specific effects. In case of significant group-by-time interactions, Bonferroni adjusted paired (within-group) and independent (between-group comparisons at post) t-tests were used for post-hoc analyses. Significant group-by-time interactions were found for all dependent variables (p < 0.001 - 0.002, eta(2)(p) = 0.16 - 0.78). Group-specific post-hoc tests showed improvements for all variables after OT (p < 0.001, Hedges'g effect size [g] = 0.05 - 1.94) and TT (p < 0.001, g = 0.04 - 2.73), but not in the CG (p = 0.058 - 1.000, g = 0.00 - 0.34). Compared to CG, OT showed larger SLJ (p = 0.001), cardiorespiratory fitness (p = 0.004), FVC (p = 0.008), and RHR (p < 0.001) improvements. TT showed larger improvements in SLJ (p = 0.036), cardiorespiratory fitness (p < 0.001), and RHR (p < 0.001) compared with CG. Compared to OT, TT showed larger improvements for SLJ (p = 0.018). In conclusion, sand-based PJT combined with either OT or TT similarly improved most measures of physical fitness, with greater SLJ improvement after TT. Coaches may use both concurrent exercise regimes based on preferences and logistical constrains (e.g., weather; access to treadmill equipment).}, language = {en} } @phdthesis{Parry2023, author = {Parry, Victor}, title = {From individual to community level: Assessing swimming movement, dispersal and fitness of zooplankton}, doi = {10.25932/publishup-59769}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597697}, school = {Universit{\"a}t Potsdam}, pages = {ix, 118}, year = {2023}, abstract = {Movement is a mechanism that shapes biodiversity patterns across spatialtemporal scales. Thereby, the movement process affects species interactions, population dynamics and community composition. In this thesis, I disentangled the effects of movement on the biodiversity of zooplankton ranging from the individual to the community level. On the individual movement level, I used video-based analysis to explore the implication of movement behavior on preypredator interactions. My results showed that swimming behavior was of great importance as it determined their survival in the face of predation. The findings also additionally highlighted the relevance of the defense status/morphology of prey, as it not only affected the prey-predator relationship by the defense itself but also by plastic movement behavior. On the community movement level, I used a field mesocosm experiment to explore the role of dispersal (time i.e., from the egg bank into the water body and space i.e., between water bodies) in shaping zooplankton metacommunities. My results revealed that priority effects and taxon-specific dispersal limitation influenced community composition. Additionally, different modes of dispersal also generated distinct community structures. The egg bank and biotic vectors (i.e. mobile links) played significant roles in the colonization of newly available habitat patches. One crucial aspect that influences zooplankton species after arrival in new habitats is the local environmental conditions. By using common garden experiments, I assessed the performance of zooplankton communities in their home vs away environments in a group of ponds embedded within an agricultural landscape. I identified environmental filtering as a driving factor as zooplankton communities from individual ponds developed differently in their home and away environments. On the individual species level, there was no consistent indication of local adaptation. For some species, I found a higher abundance/fitness in their home environment, but for others, the opposite was the case, and some cases were indifferent. Overall, the thesis highlights the links between movement and biodiversity patterns, ranging from the individual active movement to the community level.}, language = {en} } @phdthesis{Hoffmann2021, author = {Hoffmann, Julia}, title = {Influence of artificial light at night on the behavior of small mammals}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2021}, abstract = {Artificial light at night (ALAN), one form of human-induced rapid environmental change, is continuously spreading in space and time and increasing in intensity as part of the ongoing urbanization. A vast range of animals is known to be affected by ALAN as, among other things, it can mask natural light cues and change both the perceived as well as the actual predation risk. Since ALAN per se is restricted to the night, the majority of studies so far have focused on nocturnal species or behavioral changes during the night. How polyphasic species respond to ALAN has been largely overlooked, although they can possibly carry over effects of nighttime illumination into the day. Additionally, individuals within a species are known to consistently differ in their personality which includes risk-taking behavior. While this implies that ALAN can lead to varying anti-predatory responses in animals within a population, knowledge on this topic is still very limited. This thesis aims at investigating what initial behavioral reaction is caused by ALAN in polyphasic small mammals while also incorporating an animal's personality. Nighttime and daytime activity, movement and foraging behavior of the bank vole (Myodes glareolus) were investigated in regards to effects of different light intensities and partial illumination in the laboratory. Additionally, changes in intra- and interspecific interactions of bank voles and striped field mice (Apodemus agrarius) subjected to ALAN were studied in experimental populations in semi-natural outdoor enclosures. Chapter I explores whether behavioral responses to ALAN of varying intensity are related to animal personality. Results showed that bank voles reduced movement and foraging already under dim light and that bold animals generally moved and foraged more than shy animals. Exclusively under bright illumination did bold animals exploit the food patches more than shy animals. The results demonstrate that bank voles are affected by light intensities prevalent in urban habitats. Additionally, certain light scenarios might lead to an advantage of and a shift towards certain personality types. Chapter II focusses on the effects of partial ALAN on foraging behavior of animals with varying animal personalities while extending the view towards possible carry-over effects of ALAN into the daytime. While bank voles reduced foraging behavior in illuminated areas at night, they increased foraging behavior in those areas at the subsequent day. Bold individuals generally had lower giving-up densities than shy individuals but this difference was especially pronounced during daytime at formerly illuminated food patches. Thus, ALAN can have carry-over effects into the daytime in polyphasic animals and thus has the potential to affect daytime intra- and interspecific interactions. Chapter III broadens the view from the individual to the population level. Experimental populations consisting of bank voles and striped field mice were established in large outdoor enclosures successively experienced natural and artificial light conditions at night. VHF telemetry data revealed that animals were predominantly active during the day under natural conditions. This difference between day and night vanished under ALAN. Additionally, conspecifics reduced home range overlap, proximity and activity synchrony while boldness was not associated with behavioral changed due to ALAN. The results suggest that ALAN has the potential to alter intraspecific interactions and thus can have fitness consequences on the population level. Overall, the present thesis shows that ALAN can affect nighttime and daytime behavior as well as intraspecific interactions of polyphasic small mammals. Differences in risk- taking behavior of individuals may vary in importance depending on other environmental variables. Thus, this thesis hopefully triggers broadening the view regarding the role of an animal's personality in coping with ALAN and the effects on daytime behavior and diurnal species.}, language = {en} } @article{DalleauKramerSchadtGangatetal.2019, author = {Dalleau, Mayeul and Kramer-Schadt, Stephanie and Gangat, Yassine and Bourjea, Jerome and Lajoie, Gilles and Grimm, Volker}, title = {Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {18}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5552}, pages = {10317 -- 10342}, year = {2019}, abstract = {Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade-offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual-based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open-source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals.}, language = {en} } @misc{AdaniForgiariniGuastietal.2014, author = {Adani, Flavia and Forgiarini, Matteo and Guasti, Maria Teresa and Van der Lely, Heather K. J.}, title = {Number dissimilarities facilitate the comprehension of relative clauses in children with (Grammatical) Specific Language Impairment}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {525}, issn = {1866-8364}, doi = {10.25932/publishup-41545}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-415453}, pages = {811 -- 841}, year = {2014}, abstract = {This study investigates whether number dissimilarities on subject and object DPs facilitate the comprehension of subject-and object-extracted centre-embedded relative clauses in children with Grammatical Specific Language Impairment (G-SLI). We compared the performance of a group of English-speaking children with G-SLI (mean age: 12; 11) with that of two groups of younger typically developing (TD) children, matched on grammar and receptive vocabulary, respectively. All groups were more accurate on subject-extracted relative clauses than object-extracted ones and, crucially, they all showed greater accuracy for sentences with dissimilar number features (i.e., one singular, one plural) on the head noun and the embedded DP. These findings are interpreted in the light of current psycholinguistic models of sentence comprehension in TD children and provide further insight into the linguistic nature of G-SLI.}, language = {en} } @misc{RamirezCampilloMoranOliveretal.2022, author = {Ramirez-Campillo, Rodrigo and Moran, Jason and Oliver, Jonathan L. and Pedley, Jason S. and Lloyd, Rhodri S. and Granacher, Urs}, title = {Programming Plyometric-Jump Training in Soccer: A Review}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {813}, issn = {1866-8364}, doi = {10.25932/publishup-58103}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581031}, pages = {20}, year = {2022}, abstract = {The aim of this review was to describe and summarize the scientific literature on programming parameters related to jump or plyometric training in male and female soccer players of different ages and fitness levels. A literature search was conducted in the electronic databases PubMed, Web of Science and Scopus using keywords related to the main topic of this study (e.g., "ballistic" and "plyometric"). According to the PICOS framework, the population for the review was restricted to soccer players, involved in jump or plyometric training. Among 7556 identified studies, 90 were eligible for inclusion. Only 12 studies were found for females. Most studies (n = 52) were conducted with youth male players. Moreover, only 35 studies determined the effectiveness of a given jump training programming factor. Based on the limited available research, it seems that a dose of 7 weeks (1-2 sessions per week), with ~80 jumps (specific of combined types) per session, using near-maximal or maximal intensity, with adequate recovery between repetitions (<15 s), sets (≥30 s) and sessions (≥24-48 h), using progressive overload and taper strategies, using appropriate surfaces (e.g., grass), and applied in a well-rested state, when combined with other training methods, would increase the outcome of effective and safe plyometric-jump training interventions aimed at improving soccer players physical fitness. In conclusion, jump training is an effective and easy-to-administer training approach for youth, adult, male and female soccer players. However, optimal programming for plyometric-jump training in soccer is yet to be determined in future research.}, language = {en} } @article{RamirezCampilloMoranOliveretal.2022, author = {Ramirez-Campillo, Rodrigo and Moran, Jason and Oliver, Jonathan L. and Pedley, Jason S. and Lloyd, Rhodri S. and Granacher, Urs}, title = {Programming Plyometric-Jump Training in Soccer: A Review}, series = {Sports}, volume = {10}, journal = {Sports}, edition = {6}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2075-4663}, doi = {10.3390/sports10060094}, pages = {1 -- 20}, year = {2022}, abstract = {The aim of this review was to describe and summarize the scientific literature on programming parameters related to jump or plyometric training in male and female soccer players of different ages and fitness levels. A literature search was conducted in the electronic databases PubMed, Web of Science and Scopus using keywords related to the main topic of this study (e.g., "ballistic" and "plyometric"). According to the PICOS framework, the population for the review was restricted to soccer players, involved in jump or plyometric training. Among 7556 identified studies, 90 were eligible for inclusion. Only 12 studies were found for females. Most studies (n = 52) were conducted with youth male players. Moreover, only 35 studies determined the effectiveness of a given jump training programming factor. Based on the limited available research, it seems that a dose of 7 weeks (1-2 sessions per week), with ~80 jumps (specific of combined types) per session, using near-maximal or maximal intensity, with adequate recovery between repetitions (<15 s), sets (≥30 s) and sessions (≥24-48 h), using progressive overload and taper strategies, using appropriate surfaces (e.g., grass), and applied in a well-rested state, when combined with other training methods, would increase the outcome of effective and safe plyometric-jump training interventions aimed at improving soccer players physical fitness. In conclusion, jump training is an effective and easy-to-administer training approach for youth, adult, male and female soccer players. However, optimal programming for plyometric-jump training in soccer is yet to be determined in future research.}, language = {en} } @phdthesis{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Understanding predator-prey interactions}, doi = {10.25932/publishup-43162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431624}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2019}, abstract = {Predators can have numerical and behavioral effects on prey animals. While numerical effects are well explored, the impact of behavioral effects is unclear. Furthermore, behavioral effects are generally either analyzed with a focus on single individuals or with a focus on consequences for other trophic levels. Thereby, the impact of fear on the level of prey communities is overlooked, despite potential consequences for conservation and nature management. In order to improve our understanding of predator-prey interactions, an assessment of the consequences of fear in shaping prey community structures is crucial. In this thesis, I evaluated how fear alters prey space use, community structure and composition, focusing on terrestrial mammals. By integrating landscapes of fear in an existing individual-based and spatially-explicit model, I simulated community assembly of prey animals via individual home range formation. The model comprises multiple hierarchical levels from individual home range behavior to patterns of prey community structure and composition. The mechanistic approach of the model allowed for the identification of underlying mechanism driving prey community responses under fear. My results show that fear modified prey space use and community patterns. Under fear, prey animals shifted their home ranges towards safer areas of the landscape. Furthermore, fear decreased the total biomass and the diversity of the prey community and reinforced shifts in community composition towards smaller animals. These effects could be mediated by an increasing availability of refuges in the landscape. Under landscape changes, such as habitat loss and fragmentation, fear intensified negative effects on prey communities. Prey communities in risky environments were subject to a non-proportional diversity loss of up to 30\% if fear was taken into account. Regarding habitat properties, I found that well-connected, large safe patches can reduce the negative consequences of habitat loss and fragmentation on prey communities. Including variation in risk perception between prey animals had consequences on prey space use. Animals with a high risk perception predominantly used safe areas of the landscape, while animals with a low risk perception preferred areas with a high food availability. On the community level, prey diversity was higher in heterogeneous landscapes of fear if individuals varied in their risk perception compared to scenarios in which all individuals had the same risk perception. Overall, my findings give a first, comprehensive assessment of the role of fear in shaping prey communities. The linkage between individual home range behavior and patterns at the community level allows for a mechanistic understanding of the underlying processes. My results underline the importance of the structure of the landscape of fear as a key driver of prey community responses, especially if the habitat is threatened by landscape changes. Furthermore, I show that individual landscapes of fear can improve our understanding of the consequences of trait variation on community structures. Regarding conservation and nature management, my results support calls for modern conservation approaches that go beyond single species and address the protection of biotic interactions.}, language = {en} } @article{Hein2021, author = {Hein, Johannes}, title = {Verb movement and the lack of verb-doubling VP topicalization in Germanic}, series = {The journal of comparative Germanic linguistics}, volume = {24}, journal = {The journal of comparative Germanic linguistics}, number = {1}, publisher = {Springer Science + Business Media B.V.}, address = {Dordrecht}, issn = {1383-4924}, doi = {10.1007/s10828-021-09125-5}, pages = {89 -- 144}, year = {2021}, abstract = {In the absence of a stranded auxiliary or modal, VP-topicalization in most Germanic languages gives rise to the presence of a dummy verb meaning 'do'. Cross-linguistically, this is a rather uncommon strategy as comparable VP-fronting constructions in other languages, e.g. Hebrew, Polish, and Portuguese, among many others, exhibit verb doubling. A comparison of several recent approaches to verb doubling in VP-fronting reveals that it is the consequence of VP-evacuating head movement of the verb to some higher functional head, which saves the (low copy of the) verb from undergoing copy deletion as part of the low VP copy in the VP-topicalization dependency. Given that almost all Germanic languages have such V-salvaging head movement, namely V-to-C movement, but do not show verb doubling, this paper suggests that V-raising is exceptionally impossible in VP-topicalization clauses and addresses the question of why it is blocked. After discussing and rejecting some conceivable explanations for the lack of verb doubling, I propose that the blocking effect arises from a bleeding interaction between V-to-C movement and VP-to-SpecCP movement. As both operations are triggered by the same head, i.e. C, the VP is always encountered first by a downward search algorithm. Movement of VP then freezes it and its lower copies for subextraction precluding subsequent V-raising. Crucially, this implies that there is no V-to-T raising in most Germanic languages. V2 languages with V-to-T raising, e.g. Yiddish, are correctly predicted to not exhibit the blocking effect.}, language = {en} }