@article{BazhenovaZerbatoOlibonietal.2019, author = {Bazhenova, Ekaterina and Zerbato, Francesca and Oliboni, Barbara and Weske, Mathias}, title = {From BPMN process models to DMN decision models}, series = {Information systems}, volume = {83}, journal = {Information systems}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0306-4379}, doi = {10.1016/j.is.2019.02.001}, pages = {69 -- 88}, year = {2019}, abstract = {The interplay between process and decision models plays a crucial role in business process management, as decisions may be based on running processes and affect process outcomes. Often process models include decisions that are encoded through process control flow structures and data flow elements, thus reducing process model maintainability. The Decision Model and Notation (DMN) was proposed to achieve separation of concerns and to possibly complement the Business Process Model and Notation (BPMN) for designing decisions related to process models. Nevertheless, deriving decision models from process models remains challenging, especially when the same data underlie both process and decision models. In this paper, we explore how and to which extent the data modeled in BPMN processes and used for decision-making may be represented in the corresponding DMN decision models. To this end, we identify a set of patterns that capture possible representations of data in BPMN processes and that can be used to guide the derivation of decision models related to existing process models. Throughout the paper we refer to real-world healthcare processes to show the applicability of the proposed approach. (C) 2019 Elsevier Ltd. All rights reserved.}, language = {en} } @article{CombiOliboniWeskeetal.2021, author = {Combi, Carlo and Oliboni, Barbara and Weske, Mathias and Zerbato, Francesca}, title = {Seamless conceptual modeling of processes with transactional and analytical data}, series = {Data \& knowledge engineering}, volume = {134}, journal = {Data \& knowledge engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-023X}, doi = {10.1016/j.datak.2021.101895}, pages = {14}, year = {2021}, abstract = {In the field of Business Process Management (BPM), modeling business processes and related data is a critical issue since process activities need to manage data stored in databases. The connection between processes and data is usually handled at the implementation level, even if modeling both processes and data at the conceptual level should help designers in improving business process models and identifying requirements for implementation. Especially in data -and decision-intensive contexts, business process activities need to access data stored both in databases and data warehouses. In this paper, we complete our approach for defining a novel conceptual view that bridges process activities and data. The proposed approach allows the designer to model the connection between business processes and database models and define the operations to perform, providing interesting insights on the overall connected perspective and hints for identifying activities that are crucial for decision support.}, language = {en} } @phdthesis{Mandal2019, author = {Mandal, Sankalita}, title = {Event handling in business processes}, doi = {10.25932/publishup-44170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441700}, school = {Universit{\"a}t Potsdam}, pages = {xix, 151}, year = {2019}, abstract = {Business process management (BPM) deals with modeling, executing, monitoring, analyzing, and improving business processes. During execution, the process communicates with its environment to get relevant contextual information represented as events. Recent development of big data and the Internet of Things (IoT) enables sources like smart devices and sensors to generate tons of events which can be filtered, grouped, and composed to trigger and drive business processes. The industry standard Business Process Model and Notation (BPMN) provides several event constructs to capture the interaction possibilities between a process and its environment, e.g., to instantiate a process, to abort an ongoing activity in an exceptional situation, to take decisions based on the information carried by the events, as well as to choose among the alternative paths for further process execution. The specifications of such interactions are termed as event handling. However, in a distributed setup, the event sources are most often unaware of the status of process execution and therefore, an event is produced irrespective of the process being ready to consume it. BPMN semantics does not support such scenarios and thus increases the chance of processes getting delayed or getting in a deadlock by missing out on event occurrences which might still be relevant. The work in this thesis reviews the challenges and shortcomings of integrating real-world events into business processes, especially the subscription management. The basic integration is achieved with an architecture consisting of a process modeler, a process engine, and an event processing platform. Further, points of subscription and unsubscription along the process execution timeline are defined for different BPMN event constructs. Semantic and temporal dependencies among event subscription, event occurrence, event consumption and event unsubscription are considered. To this end, an event buffer with policies for updating the buffer, retrieving the most suitable event for the current process instance, and reusing the event has been discussed that supports issuing of early subscription. The Petri net mapping of the event handling model provides our approach with a translation of semantics from a business process perspective. Two applications based on this formal foundation are presented to support the significance of different event handling configurations on correct process execution and reachability of a process path. Prototype implementations of the approaches show that realizing flexible event handling is feasible with minor extensions of off-the-shelf process engines and event platforms.}, language = {en} } @misc{PufahlWongWeske2018, author = {Pufahl, Luise and Wong, Tsun Yin and Weske, Mathias}, title = {Design of an extensible BPMN process simulator}, series = {Business Process Management Workshops (BPM 2017)}, volume = {308}, journal = {Business Process Management Workshops (BPM 2017)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-74030-0}, issn = {1865-1348}, doi = {10.1007/978-3-319-74030-0_62}, pages = {782 -- 795}, year = {2018}, abstract = {Business process simulation is an important means for quantitative analysis of a business process and to compare different process alternatives. With the Business Process Model and Notation (BPMN) being the state-of-the-art language for the graphical representation of business processes, many existing process simulators support already the simulation of BPMN diagrams. However, they do not provide well-defined interfaces to integrate new concepts in the simulation environment. In this work, we present the design and architecture of a proof-of-concept implementation of an open and extensible BPMN process simulator. It also supports the simulation of multiple BPMN processes at a time and relies on the building blocks of the well-founded discrete event simulation. The extensibility is assured by a plug-in concept. Its feasibility is demonstrated by extensions supporting new BPMN concepts, such as the simulation of business rule activities referencing decision models and batch activities.}, language = {en} }