@unpublished{DeXingHui2003, author = {De-Xing, Kong and Hui, Yao}, title = {Global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws II}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26565}, year = {2003}, abstract = {In this paper, by a new constructive method, the authors reprove the global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly degenerate fields. It is shown that the system with nonlinear boundary conditions is globally exactly boundary controllable in the class of piecewise C¹ functions. In particular, the authors give the optimal control time of the system. Finally, a new application is also given.}, language = {en} } @article{KegelesOriti2017, author = {Kegeles, Alexander and Oriti, Daniele}, title = {Continuous point symmetries in group field theories}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {50}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {12}, publisher = {IOP Publishing Ltd}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/aa5c14}, pages = {36}, year = {2017}, abstract = {We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.}, language = {en} } @article{KegelesOriti2016, author = {Kegeles, Alexander and Oriti, Daniele}, title = {Generalized conservation laws in non-local field theories}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {49}, journal = {Journal of physics : A, Mathematical and theoretical}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/49/13/135401}, pages = {119 -- 134}, year = {2016}, abstract = {We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.}, language = {en} }