@article{ReifarthBekirBapolisietal.2022, author = {Reifarth, Martin and Bekir, Marek and Bapolisi, Alain M. and Titov, Evgenii and Nusshardt, Fabian and Nowaczyk, Julius and Grigoriev, Dmitry and Sharma, Anjali and Saalfrank, Peter and Santer, Svetlana and Hartlieb, Matthias and B{\"o}ker, Alexander}, title = {A dual pH- and light-responsive spiropyrane-based surfactant}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {61}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.202114687}, pages = {10}, year = {2022}, abstract = {A cationic surfactant containing a spiropyrane unit is prepared exhibiting a dual-responsive adjustability of its surface-active characteristics. The switching mechanism of the system relies on the reversible conversion of the non-ionic spiropyrane (SP) to a zwitterionic merocyanine (MC) and can be controlled by adjusting the pH value and via light, resulting in a pH-dependent photoactivity: While the compound possesses a pronounced difference in surface activity between both forms under acidic conditions, this behavior is suppressed at a neutral pH level. The underlying switching processes are investigated in detail, and a thermodynamic explanation based on a combination of theoretical and experimental results is provided. This complex stimuli-responsive behavior enables remote-control of colloidal systems. To demonstrate its applicability, the surfactant is utilized for the pH-dependent manipulation of oil-in-water emulsions.}, language = {en} } @article{TitovSharmaLomadzeetal.2021, author = {Titov, Evgenii and Sharma, Anjali and Lomadze, Nino and Saalfrank, Peter and Santer, Svetlana and Bekir, Marek}, title = {Photoisomerization of an azobenzene-containing surfactant within a micelle}, series = {ChemPhotoChem}, volume = {5}, journal = {ChemPhotoChem}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2367-0932}, doi = {10.1002/cptc.202100103}, pages = {926 -- 932}, year = {2021}, abstract = {Photosensitive azobenzene-containing surfactants have attracted great attention in past years because they offer a means to control soft-matter transformations with light. At concentrations higher than the critical micelle concentration (CMC), the surfactant molecules aggregate and form micelles, which leads to a slowdown of the photoinduced trans -> cis azobenzene isomerization. Here, we combine nonadiabatic dynamics simulations for the surfactant molecules embedded in the micelles with absorption spectroscopy measurements of micellar solutions to uncover the reasons responsible for the reaction slowdown. Our simulations reveal a decrease of isomerization quantum yields for molecules inside the micelles. We also observe a reduction of extinction coefficients upon micellization. These findings explain the deceleration of the trans -> cis switching in micelles of the azobenzene-containing surfactants.}, language = {en} }