@article{BloetheMunackKorupetal.2014, author = {Bloethe, Jan H. and Munack, Henry and Korup, Oliver and Fuelling, Alexander and Garzanti, Eduardo and Resentini, Alberto and Kubik, Peter W.}, title = {Late Quaternary valley infill and dissection in the Indus River, western Tibetan Plateau margin}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {94}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2014.04.011}, pages = {102 -- 119}, year = {2014}, abstract = {The Indus, one of Earth's major rivers, drains large parts of the NW Himalaya and the Transhimalayan ranges that form part of the western Tibetan Plateau margin. In the western Himalayan syntaxis, where local topographic relief exceeds 7 km, the Indus has incised a steep bedrock gorge at rates of several mm yr(-1). Upstream, however, the upper Indus and its tributaries alternate between bedrock gorges and broad alluvial flats flanked by the Ladakh and Zanskar ranges. We review the late Quaternary valley history in this region with a focus on the confluence of the Indus and Zanskar Rivers, where vast alluvial terrace staircases and lake sediments record major episodes of aggradation and incision. New absolute dating of high-level fluvial terrace remnants using cosmogenic Be-10, optically and infrared stimulated luminescence (OSL, IRSL) indicates at least two phases of late Quaternary valley infilling. These phases commenced before similar to 200 ka and similar to 50-20 ka, judging from terrace treads stranded >150 m and similar to 30-40 m above modern river levels, respectively. Numerous stacks of lacustrine sediments that straddle the Indus River >200 km between the city of Leh and the confluence with the Shyok River share a distinct horizontal alignment. Constraints from IRSL samples of lacustrine sequences from the Leh-Spituk area reveal a protracted lake phase from >177 ka to 72 ka, locally accumulating >50-m thick deposits. In the absence of tectonic faulting, major lithological differences, and stream capture, we attribute the formation of this and other large lakes in the region to natural damming by large landslides, glaciers, and alluvial fans. The overall patchy landform age constraints from earlier studies can be reconciled by postulating a major deglacial control on sediment flux, valley infilling, and subsequent incision that has been modulated locally by backwater effects of natural damming. While comparison with Pleistocene monsoon proxies reveals no obvious correlation, a lateor post-glacial sediment pulse seems a more likely source of this widespread sedimentation that has partly buried the dissected bedrock topography. Overall, the long residence times of fluvial, alluvial and lacustrine deposits in the region (>500 ka) support previous studies, but remain striking given the dominantly steep slopes and deeply carved valleys that characterise this high-altitude mountain desert. Recalculated late Quaternary rates of fluvial bedrock incision in the Indus and Zanskar of 1.5 +/- 0.2 mm yr(-1) are at odds with the longevity of juxtaposed valley-fill deposits, unless a lack of decisive lateral fluvial erosion helps to preserve these late Pleistocene sedimentary archives. We conclude that alternating, similar to 10(4)-yr long, phases of massive infilling and incision have dominated the late Quaternary history of the Indus valley below the western Tibetan Plateau margin. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchwanghartRyanKorup2018, author = {Schwanghart, Wolfgang and Ryan, Marie and Korup, Oliver}, title = {Topographic and seismic constraints on the vulnerability of himalayan hydropower}, series = {Geophysical research letters}, volume = {45}, journal = {Geophysical research letters}, number = {17}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2018GL079173}, pages = {8985 -- 8992}, year = {2018}, abstract = {Plain Language Summary The 2015 Gorkha earthquake in Nepal caused severe losses in the hydropower sector. The country temporarily lost similar to 20\% of its hydropower capacity, and >30 hydropower projects were damaged. The projects hit hardest were those that were affected by earthquake-triggered landslides. We show that these projects are located along very steep rivers with towering sidewalls that are prone to become unstable during strong seismic ground shaking. A statistical classification based on a topographic metric that expresses river steepness and earthquake ground acceleration is able to approximately predict hydropower damage during future earthquakes, based on successful testing of past cases. Thus, our model enables us to estimate earthquake damages to hydropower projects in other parts of the Himalayas. We find that >10\% of the Himalayan drainage network may be unsuitable for hydropower infrastructure given high probabilities of high earthquake damages.}, language = {en} } @article{StolleSchwanghartAndermannetal.2018, author = {Stolle, Amelie and Schwanghart, Wolfgang and Andermann, Christoff and Bernhardt, Anne and Fort, Monique and Jansen, John D. and Wittmann, Hella and Merchel, Silke and Rugel, Georg and Adhikari, Basanta Raj and Korup, Oliver}, title = {Protracted river response to medieval earthquakes}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4517}, pages = {331 -- 341}, year = {2018}, abstract = {Mountain rivers respond to strong earthquakes by rapidly aggrading to accommodate excess sediment delivered by co-seismic landslides. Detailed sediment budgets indicate that rivers need several years to decades to recover from seismic disturbances, depending on how recovery is defined. We examine three principal proxies of river recovery after earthquake-induced sediment pulses around Pokhara, Nepal's second largest city. Freshly exhumed cohorts of floodplain trees in growth position indicate rapid and pulsed sedimentation that formed a fan covering 150 km2 in a Lesser Himalayan basin with tens of metres of debris between the 11th and 15th centuries AD. Radiocarbon dates of buried trees are consistent with those of nearby valley deposits linked to major medieval earthquakes, such that we can estimate average rates of re-incision since. We combine high-resolution digital elevation data, geodetic field surveys, aerial photos, and dated tree trunks to reconstruct geomorphic marker surfaces. The volumes of sediment relative to these surfaces require average net sediment yields of up to 4200 t km-2 yr-1 for the 650 years since the last inferred earthquake-triggered sediment pulse. The lithological composition of channel bedload differs from that of local bedrock, confirming that rivers are still mostly evacuating medieval valley fills, locally incising at rates of up to 0.2 m yr-1. Pronounced knickpoints and epigenetic gorges at tributary junctions further illustrate the protracted fluvial response; only the distal portions of the earthquake-derived sediment wedges have been cut to near their base. Our results challenge the notion that mountain rivers recover speedily from earthquakes within years to decades. The valley fills around Pokhara show that even highly erosive Himalayan rivers may need more than several centuries to adjust to catastrophic perturbations. Our results motivate some rethinking of post-seismic hazard appraisals and infrastructural planning in active mountain regions.}, language = {en} }