@article{vanSchaikPalmKlausetal.2016, author = {van Schaik, Loes and Palm, Juliane and Klaus, Julian and Zehe, Erwin and Schroeder, Boris}, title = {Potential effects of tillage and field borders on within-field spatial distribution patterns of earthworms}, series = {Biological chemistry}, volume = {228}, journal = {Biological chemistry}, publisher = {De Gruyter}, address = {Berlin}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.05.015}, pages = {82 -- 90}, year = {2016}, abstract = {Earthworms play a key role in regulating soil ecosystem functions and services. The small scale variability in earthworm abundance is often found to be very high, which is a problem for representative sampling of earthworm abundance at larger scales. In agricultural fields, soil tillage may influence both the average earthworm abundance as well as the spatial distribution of earthworms. Therefore we studied the abundance and spatial pattern of the different ecological earthworm types, i.e. endogeic, epigeic and anecic earthworms, in four agricultural fields differing in soil tillage (two fields with regular tillage and two fields with conservation tillage) and surrounding land use (other cropped fields or apple orchard and forest). To this aim we sampled earthworms on a total number of 430 plots (50 x 50 cm(2)) using a combination of extraction with mustard solution and hand sorting. The results exhibit large differences in average earthworm abundance between the four fields. Only one of the two fields with conservation tillage had a comparatively very high overall abundance of earthworms. Furthermore, we found a high spatial variability of earthworms within the field scale often exhibiting a patchy distribution. We detected a trend of decreasing earthworm abundances from the field border into the field for different earthworm groups on each of the fields. In three fields with low total earthworm abundance (and only very few epigeic earthworms) there was a short scale autocorrelation with ranges varying strongly for the endogeic earthworms (37.9 m, 62.6 m, and 85.2 m) compared to anecic earthworms (19.8 m, 22.8 m, and 27.4 m). In the field with high abundance, after trend removal, the variogram models for anecic and endogeic earthworms were rejected based on their negative explained variances. On this field, we found only a short scale autocorrelation for the epigeic earthworms with a range of 143 m. Based on these results it seems that ploughing alone cannot explain the differences in abundance and range of autocorrelation found on the four fields. The trend of strongly decreasing earthworm abundance from the field border into the field in the one field with high abundance does indicate that the field border or surrounding land use may also influence the recolonization of fields, but more research is required to provide further evidence for this hypothesis. Due to the very different patterns of earthworm distributions in the fields it remains difficult to recommend an optimal number and distance of samples to obtain a representative earthworm abundance for the field scale. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{PalmvanSchaikSchroederEsselbach2013, author = {Palm, Juliane and van Schaik, N. Loes M. B. and Schr{\"o}der-Esselbach, Boris}, title = {Modelling distribution patterns of anecic, epigeic and endogeic earthworms at catchment-scale in agro-ecosystems}, series = {Pedobiologia : international journal of soil biology}, volume = {56}, journal = {Pedobiologia : international journal of soil biology}, number = {1}, publisher = {Elsevier}, address = {Jena}, issn = {0031-4056}, doi = {10.1016/j.pedobi.2012.08.007}, pages = {23 -- 31}, year = {2013}, abstract = {Species distribution models are useful for identifying driving environmental factors that determine earthworm distributions as well as for predicting earthworm distribution patterns and abundances at different scales. However, due to large efforts in data acquisition, studies on larger scales are rare and often focus on single species or earthworms in general. In this study, we use boosted regression tree models (BRTs) for predicting the distribution of the three functional earthworm types, i.e. anecics, endogeics and epigeics, in an agricultural area in Baden-Wurttemberg (Southwest Germany). First, we predicted presence and absence and later earthworm abundances, considering predictors depicting land management, topography, and soil conditions as well as biotic interaction by using the abundance of the other functional earthworm types. The final presence-absence models performed reasonably well, with explained deviances between 24 and 51\% after crossvalidation. Models for abundances of anecics and endogeics were less successful, since the high small-scale variability and patchiness in earthworm abundance influenced the representativeness of the field measurements. This resulted in a significant model uncertainty, which is practically very difficult to overcome with earthworm sampling campaigns at the catchment scale. Results showed that management practices (i.e. disturbances), topography, soil conditions, and biotic interactions with other earthworm groups are the most relevant predictors for spatial distribution (incidence) patterns of all three functional groups. The response curves and contributions of predictors differ for the three functional earthworm types. Epigeics are also controlled by topographic features, endogeics by soil parameters.}, language = {en} } @article{NadaVanRensburgClaassensetal.2012, author = {Nada, Wael Mohamed Abdel-Rahman and Van Rensburg, L. and Claassens, Sarina and Blumenstein, Oswald and Friedrich, A.}, title = {Evaluation of organic matter stability in wood compost by chemical and thermogravimetric analysis}, series = {International journal of environmental research}, volume = {6}, journal = {International journal of environmental research}, number = {2}, publisher = {Graduate Faculty of Environment, University of Theran}, address = {Tehran}, issn = {1735-6865}, pages = {425 -- 434}, year = {2012}, abstract = {This study investigated maturation and stability levels during composting of Quercus robur (QR) woodchips mixed with different nitrogen sources (horse manure, HM and lake mud, LM) for potential agronomic utilisation. The woodchips were mixed with HM and LM, respectively, at mixing ratios of 1QR:2HM or QR:2LM. The experiment was conducted in a greenhouse over 100 days. During composting, organic carbon and its fractioning and humification constituents were quantified. In the final compost product, pH, organic matter (OM), cation exchange capacity (CEC) and selected available nutrients were measured. Thermostability of compost, compared with that of soil and compost mixed with charcoal were also quantified. Results showed OM evolution during the composting process with total organic and extractable carbons and humification indices decreasing, while the degree of humification increased. Compost produced from the 1QR:2HM mix resulted in the highest available nutrients, CEC and OM content values in the final product. Thermogravimetric profiles indicated that compost OM thermostability was higher than that in soil and higher for the 1QR:2HM than the 1QR:2LM mix. Application of charcoal revealed no additional stabilising effect of OM in wood compost.}, language = {en} }