@article{RadchukReedTeplitskyetal.2019, author = {Radchuk, Viktoriia and Reed, Thomas and Teplitsky, Celine and van de Pol, Martijn and Charmantier, Anne and Hassall, Christopher and Adamik, Peter and Adriaensen, Frank and Ahola, Markus P. and Arcese, Peter and Miguel Aviles, Jesus and Balbontin, Javier and Berg, Karl S. and Borras, Antoni and Burthe, Sarah and Clobert, Jean and Dehnhard, Nina and de Lope, Florentino and Dhondt, Andre A. and Dingemanse, Niels J. and Doi, Hideyuki and Eeva, Tapio and Fickel, J{\"o}rns and Filella, Iolanda and Fossoy, Frode and Goodenough, Anne E. and Hall, Stephen J. G. and Hansson, Bengt and Harris, Michael and Hasselquist, Dennis and Hickler, Thomas and Jasmin Radha, Jasmin and Kharouba, Heather and Gabriel Martinez, Juan and Mihoub, Jean-Baptiste and Mills, James A. and Molina-Morales, Mercedes and Moksnes, Arne and Ozgul, Arpat and Parejo, Deseada and Pilard, Philippe and Poisbleau, Maud and Rousset, Francois and R{\"o}del, Mark-Oliver and Scott, David and Carlos Senar, Juan and Stefanescu, Constanti and Stokke, Bard G. and Kusano, Tamotsu and Tarka, Maja and Tarwater, Corey E. and Thonicke, Kirsten and Thorley, Jack and Wilting, Andreas and Tryjanowski, Piotr and Merila, Juha and Sheldon, Ben C. and Moller, Anders Pape and Matthysen, Erik and Janzen, Fredric and Dobson, F. Stephen and Visser, Marcel E. and Beissinger, Steven R. and Courtiol, Alexandre and Kramer-Schadt, Stephanie}, title = {Adaptive responses of animals to climate change are most likely insufficient}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-10924-4}, pages = {14}, year = {2019}, abstract = {Biological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species.}, language = {en} } @article{SvenningGravelHoltetal.2014, author = {Svenning, Jens-Christian and Gravel, Dominique and Holt, Robert D. and Schurr, Frank Martin and Thuiller, Wilfried and Muenkemueller, Tamara and Schiffers, Katja H. and Dullinger, Stefan and Edwards, Thomas C. and Hickler, Thomas and Higgins, Steven I. and Nabel, Julia E. M. S. and Pagel, J{\"o}rn and Normand, Signe}, title = {The influence of interspecific interactions on species range expansion rates}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {37}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2013.00574.x}, pages = {1198 -- 1209}, year = {2014}, language = {en} } @misc{KisslingDormannGroeneveldetal.2012, author = {Kissling, W. D. and Dormann, Carsten F. and Groeneveld, Juergen and Hickler, Thomas and K{\"u}hn, Ingolf and McInerny, Greg J. and Montoya, Jose M. and R{\"o}mermann, Christine and Schiffers, Katja and Schurr, Frank Martin and Singer, Alexander and Svenning, Jens-Christian and Zimmermann, Niklaus E. and O'Hara, Robert B.}, title = {Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents}, series = {Journal of biogeography}, volume = {39}, journal = {Journal of biogeography}, number = {12}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/j.1365-2699.2011.02663.x}, pages = {2163 -- 2178}, year = {2012}, abstract = {Aim Biotic interactions within guilds or across trophic levels have widely been ignored in species distribution models (SDMs). This synthesis outlines the development of species interaction distribution models (SIDMs), which aim to incorporate multispecies interactions at large spatial extents using interaction matrices. Location Local to global. Methods We review recent approaches for extending classical SDMs to incorporate biotic interactions, and identify some methodological and conceptual limitations. To illustrate possible directions for conceptual advancement we explore three principal ways of modelling multispecies interactions using interaction matrices: simple qualitative linkages between species, quantitative interaction coefficients reflecting interaction strengths, and interactions mediated by interaction currencies. We explain methodological advancements for static interaction data and multispecies time series, and outline methods to reduce complexity when modelling multispecies interactions. Results Classical SDMs ignore biotic interactions and recent SDM extensions only include the unidirectional influence of one or a few species. However, novel methods using error matrices in multivariate regression models allow interactions between multiple species to be modelled explicitly with spatial co-occurrence data. If time series are available, multivariate versions of population dynamic models can be applied that account for the effects and relative importance of species interactions and environmental drivers. These methods need to be extended by incorporating the non-stationarity in interaction coefficients across space and time, and are challenged by the limited empirical knowledge on spatio-temporal variation in the existence and strength of species interactions. Model complexity may be reduced by: (1) using prior ecological knowledge to set a subset of interaction coefficients to zero, (2) modelling guilds and functional groups rather than individual species, and (3) modelling interaction currencies and species effect and response traits. Main conclusions There is great potential for developing novel approaches that incorporate multispecies interactions into the projection of species distributions and community structure at large spatial extents. Progress can be made by: (1) developing statistical models with interaction matrices for multispecies co-occurrence datasets across large-scale environmental gradients, (2) testing the potential and limitations of methods for complexity reduction, and (3) sampling and monitoring comprehensive spatio-temporal data on biotic interactions in multispecies communities.}, language = {en} } @article{JeltschBlaumBroseetal.2013, author = {Jeltsch, Florian and Blaum, Niels and Brose, Ulrich and Chipperfield, Joseph D. and Clough, Yann and Farwig, Nina and Geissler, Katja and Graham, Catherine H. and Grimm, Volker and Hickler, Thomas and Huth, Andreas and May, Felix and Meyer, Katrin M. and Pagel, J{\"o}rn and Reineking, Bj{\"o}rn and Rillig, Matthias C. and Shea, Katriona and Schurr, Frank Martin and Schroeder, Boris and Tielb{\"o}rger, Katja and Weiss, Lina and Wiegand, Kerstin and Wiegand, Thorsten and Wirth, Christian and Zurell, Damaris}, title = {How can we bring together empiricists and modellers in functional biodiversity research?}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {14}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, number = {2}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2013.01.001}, pages = {93 -- 101}, year = {2013}, abstract = {Improving our understanding of biodiversity and ecosystem functioning and our capacity to inform ecosystem management requires an integrated framework for functional biodiversity research (FBR). However, adequate integration among empirical approaches (monitoring and experimental) and modelling has rarely been achieved in FBR. We offer an appraisal of the issues involved and chart a course towards enhanced integration. A major element of this path is the joint orientation towards the continuous refinement of a theoretical framework for FBR that links theory testing and generalization with applied research oriented towards the conservation of biodiversity and ecosystem functioning. We further emphasize existing decision-making frameworks as suitable instruments to practically merge these different aims of FBR and bring them into application. This integrated framework requires joint research planning, and should improve communication and stimulate collaboration between modellers and empiricists, thereby overcoming existing reservations and prejudices. The implementation of this integrative research agenda for FBR requires an adaptation in most national and international funding schemes in order to accommodate such joint teams and their more complex structures and data needs.}, language = {en} } @article{ThuillerAlbertAraujoetal.2008, author = {Thuiller, Wilfried and Albert, C{\´e}cile H. and Ara{\´u}jo, Miguel B. and Berry, Pam M. and Cabeza, Mar and Guisan, Antoine and Hickler, Thomas and Midgley, Guy F. and Paterson, James and Schurr, Frank Martin and Sykes, Martin T. and Zimmermann, Niklaus E.}, title = {Predicting global change impacts on plant species' distributions : future challenges}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.09.004}, year = {2008}, language = {en} }