@article{BalderjahnAppenfeller2023, author = {Balderjahn, Ingo and Appenfeller, Dennis}, title = {A social marketing approach to voluntary simplicity}, series = {Sustainability}, volume = {15}, journal = {Sustainability}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su15032302}, pages = {17}, year = {2023}, abstract = {Higher eco-efficiency will not be enough to slow global warming caused by climate change. To keep global warming to 2 degrees, people also need to reduce their consumption. At present, however, many who would be able to do so seem unwilling to comply. Given the threats of a runaway climate change, urgent measures are needed to promote less personal consumption. This study, therefore, examines whether social marketing consume-less appeals can be used to encourage consumers to voluntarily abstain from consumption. As part of an online experiment with nearly 2000 randomly sampled users of an online platform for sustainable consumption, we tested the effectiveness of five different "consume-less" appeals based on traditional advertising formats (including emotional, informational, and social claims). The study shows that consume-less appeals are capable of limiting personal desire to buy. However, significant differences in the effectiveness of the appeal formats used in this study were observed. In addition, we found evidence of rebound effects, which leads us to critically evaluate the overall potential of social marketing to promote more resource-conserving lifestyles. While commercial consumer-free appeals have previously been studied (e.g., Patagonia's "Don't Buy This Jacked"), this study on the effectiveness of non-commercial consume-free appeals is novel and provides new insights.}, language = {en} } @phdthesis{Kunkel2023, author = {Kunkel, Stefanie}, title = {Green industry through industry 4.0? Expected and observed effects of digitalisation in industry for environmental sustainability}, doi = {10.25932/publishup-61395}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613954}, school = {Universit{\"a}t Potsdam}, pages = {vii, 168}, year = {2023}, abstract = {Digitalisation in industry - also called "Industry 4.0" - is seen by numerous actors as an opportunity to reduce the environmental impact of the industrial sector. The scientific assessments of the effects of digitalisation in industry on environmental sustainability, however, are ambivalent. This cumulative dissertation uses three empirical studies to examine the expected and observed effects of digitalisation in industry on environmental sustainability. The aim of this dissertation is to identify opportunities and risks of digitalisation at different system levels and to derive options for action in politics and industry for a more sustainable design of digitalisation in industry. I use an interdisciplinary, socio-technical approach and look at selected countries of the Global South (Study 1) and the example of China (all studies). In the first study (section 2, joint work with Marcel Matthess), I use qualitative content analysis to examine digital and industrial policies from seven different countries in Africa and Asia for expectations regarding the impact of digitalisation on sustainability and compare these with the potentials of digitalisation for sustainability in the respective country contexts. The analysis reveals that the documents express a wide range of vague expectations that relate more to positive indirect impacts of information and communication technology (ICT) use, such as improved energy efficiency and resource management, and less to negative direct impacts of ICT, such as electricity consumption through ICT. In the second study (section 3, joint work with Marcel Matthess, Grischa Beier and Bing Xue), I conduct and analyse interviews with 18 industry representatives of the electronics industry from Europe, Japan and China on digitalisation measures in supply chains using qualitative content analysis. I find that while there are positive expectations regarding the effects of digital technologies on supply chain sustainability, their actual use and observable effects are still limited. Interview partners can only provide few examples from their own companies which show that sustainability goals have already been pursued through digitalisation of the supply chain or where sustainability effects, such as resource savings, have been demonstrably achieved. In the third study (section 4, joint work with Peter Neuh{\"a}usler, Melissa Dachrodt and Marcel Matthess), I conduct an econometric panel data analysis. I examine the relationship between the degree of Industry 4.0, energy consumption and energy intensity in ten manufacturing sectors in China between 2006 and 2019. The results suggest that overall, there is no significant relationship between the degree of Industry 4.0 and energy consumption or energy intensity in manufacturing sectors in China. However, differences can be found in subgroups of sectors. I find a negative correlation of Industry 4.0 and energy intensity in highly digitalised sectors, indicating an efficiency-enhancing effect of Industry 4.0 in these sectors. On the other hand, there is a positive correlation of Industry 4.0 and energy consumption for sectors with low energy consumption, which could be explained by the fact that digitalisation, such as the automation of previously mainly labour-intensive sectors, requires energy and also induces growth effects. In the discussion section (section 6) of this dissertation, I use the classification scheme of the three levels macro, meso and micro, as well as of direct and indirect environmental effects to classify the empirical observations into opportunities and risks, for example, with regard to the probability of rebound effects of digitalisation at the three levels. I link the investigated actor perspectives (policy makers, industry representatives), statistical data and additional literature across the system levels and consider political economy aspects to suggest fields of action for more sustainable (digitalised) industries. The dissertation thus makes two overarching contributions to the academic and societal discourse. First, my three empirical studies expand the limited state of research at the interface between digitalisation in industry and sustainability, especially by considering selected countries in the Global South and the example of China. Secondly, exploring the topic through data and methods from different disciplinary contexts and taking a socio-technical point of view, enables an analysis of (path) dependencies, uncertainties, and interactions in the socio-technical system across different system levels, which have often not been sufficiently considered in previous studies. The dissertation thus aims to create a scientifically and practically relevant knowledge basis for a value-guided, sustainability-oriented design of digitalisation in industry.}, language = {en} } @article{KhawCamilleriTiberiusetal.2023, author = {Khaw, Khai Wah and Camilleri, Mark and Tiberius, Victor and Alnoor, Alhamzah and Zaidan, Ali Shakir}, title = {Benchmarking electric power companies' sustainability and circular economy behaviors}, series = {Environment, development and sustainability}, volume = {35}, journal = {Environment, development and sustainability}, publisher = {Springer}, address = {Dordrecht}, issn = {1387-585X}, doi = {10.1007/s10668-023-02975-x}, pages = {39}, year = {2023}, abstract = {This research examines the impact of firms' decision-making, crisis management, and risk-taking behaviors on their sustainability and circular economy behaviors through the mediating role of their eco-innovation behavior in the energy industry in Iraq. Firms are exploring applicable mechanisms to increase green practices. This requires the industry to possess the essential skills to overcome the challenges that reduce sustainable activities. We applied a dual-stage structural equation modeling (PLS-SEM) and a multi-criteria decision-making (MCDM) approach to explore the linear relationships between variables, determine the weight of the criteria, and rank energy companies based on a circular economy. The online questionnaire was sent to 549 managers and heads of departments of Iraqi electric power companies. Out of these, 384 questionnaires were collected. The results indicate that firms' crisis management, decision-making, and risk-taking behaviors are significantly and positively linked to their eco-innovation behavior. This study confirms the significant and positive impact of firms' eco-innovation behavior on their sustainability and circular economy behaviors. Likewise, eco-innovation behavior has a fully mediating role. For the MCDM methods, ranking energy companies according to the circular economy can support policymakers' decisions to renew contracts with leading companies in the ranking. Practitioners can also impose government regulations on low-ranked companies. Thus, governments can reduce the problems of greenhouse gas emissions and other environmental pollution.}, language = {en} } @phdthesis{Schmitz2023, author = {Schmitz, Se{\´a}n}, title = {Using low-cost sensors to gather high resolution measurements of air quality in urban environments and inform mobility policy}, doi = {10.25932/publishup-60105}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601053}, school = {Universit{\"a}t Potsdam}, pages = {180}, year = {2023}, abstract = {Air pollution has been a persistent global problem in the past several hundred years. While some industrialized nations have shown improvements in their air quality through stricter regulation, others have experienced declines as they rapidly industrialize. The WHO's 2021 update of their recommended air pollution limit values reflects the substantial impacts on human health of pollutants such as NO2 and O3, as recent epidemiological evidence suggests substantial long-term health impacts of air pollution even at low concentrations. Alongside developments in our understanding of air pollution's health impacts, the new technology of low-cost sensors (LCS) has been taken up by both academia and industry as a new method for measuring air pollution. Due primarily to their lower cost and smaller size, they can be used in a variety of different applications, including in the development of higher resolution measurement networks, in source identification, and in measurements of air pollution exposure. While significant efforts have been made to accurately calibrate LCS with reference instrumentation and various statistical models, accuracy and precision remain limited by variable sensor sensitivity. Furthermore, standard procedures for calibration still do not exist and most proprietary calibration algorithms are black-box, inaccessible to the public. This work seeks to expand the knowledge base on LCS in several different ways: 1) by developing an open-source calibration methodology; 2) by deploying LCS at high spatial resolution in urban environments to test their capability in measuring microscale changes in urban air pollution; 3) by connecting LCS deployments with the implementation of local mobility policies to provide policy advice on resultant changes in air quality. In a first step, it was found that LCS can be consistently calibrated with good performance against reference instrumentation using seven general steps: 1) assessing raw data distribution, 2) cleaning data, 3) flagging data, 4) model selection and tuning, 5) model validation, 6) exporting final predictions, and 7) calculating associated uncertainty. By emphasizing the need for consistent reporting of details at each step, most crucially on model selection, validation, and performance, this work pushed forward with the effort towards standardization of calibration methodologies. In addition, with the open-source publication of code and data for the seven-step methodology, advances were made towards reforming the largely black-box nature of LCS calibrations. With a transparent and reliable calibration methodology established, LCS were then deployed in various street canyons between 2017 and 2020. Using two types of LCS, metal oxide (MOS) and electrochemical (EC), their performance in capturing expected patterns of urban NO2 and O3 pollution was evaluated. Results showed that calibrated concentrations from MOS and EC sensors matched general diurnal patterns in NO2 and O3 pollution measured using reference instruments. While MOS proved to be unreliable for discerning differences among measured locations within the urban environment, the concentrations measured with calibrated EC sensors matched expectations from modelling studies on NO2 and O3 pollution distribution in street canyons. As such, it was concluded that LCS are appropriate for measuring urban air quality, including for assisting urban-scale air pollution model development, and can reveal new insights into air pollution in urban environments. To achieve the last goal of this work, two measurement campaigns were conducted in connection with the implementation of three mobility policies in Berlin. The first involved the construction of a pop-up bike lane on Kottbusser Damm in response to the COVID-19 pandemic, the second surrounded the temporary implementation of a community space on B{\"o}ckhstrasse, and the last was focused on the closure of a portion of Friedrichstrasse to all motorized traffic. In all cases, measurements of NO2 were collected before and after the measure was implemented to assess changes in air quality resultant from these policies. Results from the Kottbusser Damm experiment showed that the bike-lane reduced NO2 concentrations that cyclists were exposed to by 22 ± 19\%. On Friedrichstrasse, the street closure reduced NO2 concentrations to the level of the urban background without worsening the air quality on side streets. These valuable results were communicated swiftly to partners in the city administration responsible for evaluating the policies' success and future, highlighting the ability of LCS to provide policy-relevant results. As a new technology, much is still to be learned about LCS and their value to academic research in the atmospheric sciences. Nevertheless, this work has advanced the state of the art in several ways. First, it contributed a novel open-source calibration methodology that can be used by a LCS end-users for various air pollutants. Second, it strengthened the evidence base on the reliability of LCS for measuring urban air quality, finding through novel deployments in street canyons that LCS can be used at high spatial resolution to understand microscale air pollution dynamics. Last, it is the first of its kind to connect LCS measurements directly with mobility policies to understand their influences on local air quality, resulting in policy-relevant findings valuable for decisionmakers. It serves as an example of the potential for LCS to expand our understanding of air pollution at various scales, as well as their ability to serve as valuable tools in transdisciplinary research.}, language = {en} } @article{Assen2023, author = {Assen, Louisa}, title = {Digitalization as a Provider of Sustainability?}, series = {Sustainability}, volume = {15}, journal = {Sustainability}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su15054621}, pages = {20}, year = {2023}, abstract = {Digitalization, as well as sustainability, are gaining increased relevance and have attracted significant attention in research and practice. However, the research already published about this topic examining digitalization in the retail sector does not consider the acceptance of related innovations, nor their impact on sustainability. Therefore, this article critically analyzes the acceptance of customers towards digital technologies in fashion stores as well as their impact on sustainability in the textile industry. The comprehensive analysis of the literature and the current state of research provide the basis of this paper. Theoretical models, such as the Technology-Acceptance-Model (TAM) and the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2) enable the evaluation of expectations and acceptance, as well as the assessment of possible inhibitory factors for the subsequent descriptive and statistical examination of the acceptance of digital technologies in fashion stores. The research on this subject was examined in a quantitative way. The key findings show that customers do accept digital technologies in fashion stores. The final part of this contribution describes the innovative Digitalization 4 Sustainability Framework which shows that digital technologies at the point of sale (PoS) in fashion stores could have a positive impact on sustainability. Overall, this paper shows that it is particularly important for fashion stores to concentrate on their individual strengths and customer needs as well as to indicate a more sustainable way by using digital technologies, in order to achieve added value for the customers and to set themselves apart from the competition while designing a more sustainable future. Moreover, fashion stores should make it a point of their honor to harness the power of digitalization for sake of sustainability and economic value creation.}, language = {en} } @misc{Assen2023, author = {Assen, Louisa}, title = {Digitalization as a Provider of Sustainability?}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe}, number = {155}, issn = {1867-5808}, doi = {10.25932/publishup-58640}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586408}, pages = {20}, year = {2023}, abstract = {Digitalization, as well as sustainability, are gaining increased relevance and have attracted significant attention in research and practice. However, the research already published about this topic examining digitalization in the retail sector does not consider the acceptance of related innovations, nor their impact on sustainability. Therefore, this article critically analyzes the acceptance of customers towards digital technologies in fashion stores as well as their impact on sustainability in the textile industry. The comprehensive analysis of the literature and the current state of research provide the basis of this paper. Theoretical models, such as the Technology-Acceptance-Model (TAM) and the Unified Theory of Acceptance and Use of Technology 2 (UTAUT 2) enable the evaluation of expectations and acceptance, as well as the assessment of possible inhibitory factors for the subsequent descriptive and statistical examination of the acceptance of digital technologies in fashion stores. The research on this subject was examined in a quantitative way. The key findings show that customers do accept digital technologies in fashion stores. The final part of this contribution describes the innovative Digitalization 4 Sustainability Framework which shows that digital technologies at the point of sale (PoS) in fashion stores could have a positive impact on sustainability. Overall, this paper shows that it is particularly important for fashion stores to concentrate on their individual strengths and customer needs as well as to indicate a more sustainable way by using digital technologies, in order to achieve added value for the customers and to set themselves apart from the competition while designing a more sustainable future. Moreover, fashion stores should make it a point of their honor to harness the power of digitalization for sake of sustainability and economic value creation.}, language = {en} }