@article{DrozdovAllisonShpritsetal.2022, author = {Drozdov, Alexander and Allison, Hayley J. and Shprits, Yuri Y. and Usanova, Maria E. and Saikin, Anthony and Wang, Dedong}, title = {Depletions of Multi-MeV Electrons and their association to Minima in Phase Space Density}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097620}, pages = {11}, year = {2022}, abstract = {Fast-localized electron loss, resulting from interactions with electromagnetic ion cyclotron (EMIC) waves, can produce deepening minima in phase space density (PSD) radial profiles. Here, we perform a statistical analysis of local PSD minima to quantify how readily these are associated with radiation belt depletions. The statistics of PSD minima observed over a year are compared to the Versatile Electron Radiation Belts (VERB) simulations, both including and excluding EMIC waves. The observed minima distribution can only be achieved in the simulation including EMIC waves, indicating their importance in the dynamics of the radiation belts. By analyzing electron flux depletions in conjunction with the observed PSD minima, we show that, in the heart of the outer radiation belt (L* < 5), on average, 53\% of multi-MeV electron depletions are associated with PSD minima, demonstrating that fast localized loss by interactions with EMIC waves are a common and crucial process for ultra-relativistic electron populations.}, language = {en} } @article{ShpritsAllisonWangetal.2022, author = {Shprits, Yuri Y. and Allison, Hayley J. and Wang, Dedong and Drozdov, Alexander and Szabo-Roberts, Matyas and Zhelavskaya, Irina and Vasile, Ruggero}, title = {A new population of ultra-relativistic electrons in the outer radiation zone}, series = {Journal of geophysical research : Space physics}, volume = {127}, journal = {Journal of geophysical research : Space physics}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2021JA030214}, pages = {34}, year = {2022}, abstract = {Van Allen Probes measurements revealed the presence of the most unusual structures in the ultra-relativistic radiation belts. Detailed modeling, analysis of pitch angle distributions, analysis of the difference between relativistic and ultra-realistic electron evolution, along with theoretical studies of the scattering and wave growth, all indicate that electromagnetic ion cyclotron (EMIC) waves can produce a very efficient loss of the ultra-relativistic electrons in the heart of the radiation belts. Moreover, a detailed analysis of the profiles of phase space densities provides direct evidence for localized loss by EMIC waves. The evolution of multi-MeV fluxes shows dramatic and very sudden enhancements of electrons for selected storms. Analysis of phase space density profiles reveals that growing peaks at different values of the first invariant are formed at approximately the same radial distance from the Earth and show the sequential formation of the peaks from lower to higher energies, indicating that local energy diffusion is the dominant source of the acceleration from MeV to multi-MeV energies. Further simultaneous analysis of the background density and ultra-relativistic electron fluxes shows that the acceleration to multi-MeV energies only occurs when plasma density is significantly depleted outside of the plasmasphere, which is consistent with the modeling of acceleration due to chorus waves.}, language = {en} } @article{LandisSaikinZhelavskayaetal.2022, author = {Landis, Daji August and Saikin, Anthony and Zhelavskaya, Irina and Drozdov, Alexander and Aseev, Nikita and Shprits, Yuri Y. and Pfitzer, Maximilian F. and Smirnov, Artem G.}, title = {NARX Neural Network Derivations of the Outer Boundary Radiation Belt Electron Flux}, series = {Space Weather: the international journal of research and applications}, volume = {20}, journal = {Space Weather: the international journal of research and applications}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1542-7390}, doi = {10.1029/2021SW002774}, pages = {18}, year = {2022}, abstract = {We present two new empirical models of radiation belt electron flux at geostationary orbit. GOES-15 measurements of 0.8 MeV electrons were used to train a Nonlinear Autoregressive with Exogenous input (NARX) neural network for both modeling GOES-15 flux values and an upper boundary condition scaling factor (BF). The GOES-15 flux model utilizes an input and feedback delay of 2 and 2 time steps (i.e., 5 min time steps) with the most efficient number of hidden layers set to 10. Magnetic local time, Dst, Kp, solar wind dynamic pressure, AE, and solar wind velocity were found to perform as predicative indicators of GOES-15 flux and therefore were used as the exogenous inputs. The NARX-derived upper boundary condition scaling factor was used in conjunction with the Versatile Electron Radiation Belt (VERB) code to produce reconstructions of the radiation belts during the period of July-November 1990, independent of in-situ observations. Here, Kp was chosen as the sole exogenous input to be more compatible with the VERB code. This Combined Release and Radiation Effects Satellite-era reconstruction showcases the potential to use these neural network-derived boundary conditions as a method of hindcasting the historical radiation belts. This study serves as a companion paper to another recently published study on reconstructing the radiation belts during Solar Cycles 17-24 (Saikin et al., 2021, ), for which the results featured in this paper were used.}, language = {en} } @article{SmirnovShpritsAllisonetal.2022, author = {Smirnov, Artem and Shprits, Yuri Y. and Allison, Hayley and Aseev, Nikita and Drozdov, Alexander and Kollmann, Peter and Wang, Dedong and Saikin, Anthony}, title = {Storm-Time evolution of the Equatorial Electron Pitch Angle Distributions in Earth's Outer Radiation Belt}, series = {Frontiers in astronomy and space sciences}, volume = {9}, journal = {Frontiers in astronomy and space sciences}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-987X}, doi = {10.3389/fspas.2022.836811}, pages = {15}, year = {2022}, abstract = {In this study we analyze the storm-time evolution of equatorial electron pitch angle distributions (PADs) in the outer radiation belt region using observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument aboard the Van Allen Probes in 2012-2019. The PADs are approximated using a sum of the first, third and fifth sine harmonics. Different combinations of the respective coefficients refer to the main PAD shapes within the outer radiation belt, namely the pancake, flat-top, butterfly and cap PADs. We conduct a superposed epoch analysis of 129 geomagnetic storms and analyze the PAD evolution for day and night MLT sectors. PAD shapes exhibit a strong energy-dependent response. At energies of tens of keV, the PADs exhibit little variation throughout geomagnetic storms. Cap PADs are mainly observed at energies < 300 keV, and their extent in L shrinks with increasing energy. The cap distributions transform into the pancake PADs around the main phase of the storm on the nightside, and then come back to their original shapes during the recovery phase. At higher energies on the dayside, the PADs are mainly pancake during pre-storm conditions and become more anisotropic during the main phase. The quiet-time butterfly PADs can be observed on the nightside at L> 5.6. During the main phase, butterfly PADs have stronger 90 degrees-minima and can be observed at lower L-shells (down to L = 5), then transitioning into flat-top PADs at L similar to 4.5 - 5 and pancake PADs at L < 4.5. The resulting PAD coefficients for different energies, locations and storm epochs can be used to test the wave models and physics-based radiation belt codes in terms of pitch angle distributions.}, language = {en} } @article{RipollLoridanDentonetal.2019, author = {Ripoll, Jean-Francois and Loridan, Vivien and Denton, Michael H. and Cunningham, Gregory and Reeves, G. and Santolik, O. and Fennell, Joseph and Turner, Drew L. and Drozdov, Alexander and Cervantes Villa, Juan Sebastian and Shprits, Yuri Y. and Thaller, Scott A. and Kurth, William S. and Kletzing, Craig A. and Henderson, Michael G. and Ukhorskiy, Aleksandr Y.}, title = {Observations and Fokker-Planck Simulations of the L-Shell, Energy, and Times}, series = {Journal of geophysical research : Space physics}, volume = {124}, journal = {Journal of geophysical research : Space physics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1029/2018JA026111}, pages = {1125 -- 1142}, year = {2019}, abstract = {The evolution of the radiation belts in L-shell (L), energy (E), and equatorial pitch angle (alpha(0)) is analyzed during the calm 11-day interval (4-15 March) following the 1 March 2013 storm. Magnetic Electron and Ion Spectrometer (MagEIS) observations from Van Allen Probes are interpreted alongside 1D and 3D Fokker-Planck simulations combined with consistent event-driven scattering modeling from whistler mode hiss waves. Three (L, E, alpha(0)) regions persist through 11 days of hiss wave scattering; the pitch angle-dependent inner belt core (L similar to <2.2 and E < 700 keV), pitch angle homogeneous outer belt low-energy core (L > similar to 5 and E similar to < 100 keV), and a distinct pocket of electrons (L similar to [4.5, 5.5] and E similar to [0.7, 2] MeV). The pitch angle homogeneous outer belt is explained by the diffusion coefficients that are roughly constant for alpha(0) similar to <60 degrees, E > 100 keV, 3.5 < L < L-pp similar to 6. Thus, observed unidirectional flux decays can be used to estimate local pitch angle diffusion rates in that region. Top-hat distributions are computed and observed at L similar to 3-3.5 and E = 100-300 keV.}, language = {en} } @article{DrozdovShpritsUsanovaetal.2017, author = {Drozdov, Alexander and Shprits, Yuri Y. and Usanova, Maria E. and Aseev, Nikita and Kellerman, Adam C. and Zhu, H.}, title = {EMIC wave parameterization in the long-term VERB code simulation}, series = {Journal of geophysical research : Space physics}, volume = {122}, journal = {Journal of geophysical research : Space physics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9380}, doi = {10.1002/2017JA024389}, pages = {8488 -- 8501}, year = {2017}, abstract = {Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we compare results of the simulation with the Van Allen Probes observations. The comparison shows that modeling with EMIC waves, parameterized by solar wind dynamic pressure, provides a better agreement with the observations among considered parameterizations. The simulation with EMIC waves improves the dynamics of ultrarelativistic fluxes and reproduces the formation of the local minimum in the phase space density profiles.}, language = {en} }