@article{ThompsonChenYangetal.2018, author = {Thompson, Jessica A. and Chen, Jie and Yang, Huili and Li, Tao and Bookhagen, Bodo and Burbank, Douglas}, title = {Coarse- versus fine-grain quartz OSL and cosmogenic Be-10 dating of deformed fluvial terraces on the northeast Pamir margin, northwest China}, series = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, volume = {46}, journal = {Quaternary geochronology : the international research and review journal on advances in quaternary dating techniques}, publisher = {Elsevier}, address = {Oxford}, issn = {1871-1014}, doi = {10.1016/j.quageo.2018.01.002}, pages = {1 -- 15}, year = {2018}, abstract = {Along the NE Pamir margin, flights of late Quaternary fluvial terraces span actively deforming fault-related folds. We present detailed results on two terraces dated using optically stimulated luminescence (OSL) and cosmogenic radionuclide Be-10 (CRN) techniques. Quartz OSL dating of two different grain sizes (4-11 mu m and 90-180 mu m) revealed the fine-grain quartz fraction may overestimate the terrace ages by up to a factor of ten. Two-mm, small-aliquot, coarse-grain quartz OSL ages, calculated using the minimum age model, yielded stratigraphically consistent ages within error and dated times of terrace deposition to similar to 9 and similar to 16 ka. We speculate that, in this arid environment, fine-grain samples can be transported and deposited in single, turbid, and (sometimes) night-time floods that prevent thorough bleaching and, thereby, can lead to relatively large residual OSL signals. In contrast, sand in the fluvial system is likely to have a much longer residence time during transport, thereby providing greater opportunities for thorough bleaching. CRN Be-10 depth profiles date the timing of terrace abandonment to similar to 8 and similar to 14 ka: ages that generally agree with the coarse-grain quartz OSL ages. Our new terrace age of similar to 13-14 ka is broadly consistent with other terraces in the region that indicate terrace deposition and subsequent abandonment occurred primarily during glacial-interglacial transitions, thereby suggesting a climatic control on the formation of these terraces on the margins of the Tarim Basin. Furthermore, tectonic shortening rates calculated from these deformed terraces range from similar to 1.2 to similar to 4.6 mm/a and, when combined with shortening rates from other structures in the region, illuminate the late Quaternary basinward migration of deformation to faults and folds along the Pamir-Tian Shan collisional interface.}, language = {en} } @article{ThompsonBurbankLietal.2015, author = {Thompson, Jessica A. and Burbank, Douglas W. and Li, Tao and Chen, Jie and Bookhagen, Bodo}, title = {Late Miocene northward propagation of the northeast Pamir thrust system, northwest China}, series = {Tectonics}, volume = {34}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2014TC003690}, pages = {510 -- 534}, year = {2015}, abstract = {Piggyback basins on the margins of growing orogens commonly serve as sensitive recorders of the onset of thrust deformation and changes in source areas. The Bieertuokuoyi piggyback basin, located in the hanging wall of the Pamir Frontal Thrust, provides an unambiguous record of the outward growth of the northeast Pamir margin in northwest China from the Miocene through the Quaternary. To reconstruct the deformation along the margin, we synthesized structural mapping, stratigraphy, magnetostratigraphy, and cosmogenic burial dating of basin fill and growth strata. The Bieertuokuoyi basin records the initiation of the Pamir Frontal Thrust and the Takegai Thrust similar to 5-6Ma, as well as clast provenance and paleocurrent changes resulting from the Pliocene-to-Recent uplift and exhumation of the Pamir to the south. Our results show that coeval deformation was accommodated on the major structures on the northeast Pamir margin throughout the Miocene to Recent. Furthermore, our data support a change in the regional kinematics around the Miocene-Pliocene boundary (similar to 5-6Ma). Rapid exhumation of NE Pamir extensional domes, coupled with cessation of the Kashgar-Yecheng Transfer System on the eastern margin of the Pamir, accelerated the outward propagation of the northeastern Pamir margin and the southward propagation of the Kashi-Atushi fold-and-thrust belt in the southern Tian Shan. This coeval deformation signifies the coupling of the Pamir and Tarim blocks and the transfer of shortening north to the Pamir frontal faults and across the quasi-rigid Tarim Basin to the southern Tian Shan Kashi-Atushi fold-and-thrust system.}, language = {en} } @article{SchoenbohmChenStutzetal.2014, author = {Schoenbohm, Lindsay M. and Chen, Jie and Stutz, Jamey and Sobel, Edward and Thiede, Rasmus Christoph and Kirby, Benjamin and Strecker, Manfred}, title = {Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {221}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2014.05.023}, pages = {1 -- 17}, year = {2014}, abstract = {Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modem glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects lithologic control (i.e., the location of crustal gneiss domes) and the formation of peaks that rise above the ELA and escape the glacial buzzsaw. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{SobelSchoenbohmChenetal.2011, author = {Sobel, Edward and Schoenbohm, Lindsay M. and Chen, Jie and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis}, series = {EARTH AND PLANETARY SCIENCE LETTERS}, volume = {304}, journal = {EARTH AND PLANETARY SCIENCE LETTERS}, number = {3-4}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.02.012}, pages = {369 -- 378}, year = {2011}, abstract = {The timing of the late Cenozoic collision between the Pamir salient and the Tien Shan as well as changes in the relative motion between the Pamir and Tarim are poorly constrained. The northern margin of the Pamir salient indented northward by similar to 300 km during the late Cenozoic, accommodated by south-dipping intracontinental subduction along the Main Pamir Thrust (MPT) coupled to strike-slip faults on the eastern flank of the orogen and both strike-slip and thrust faults on the western margin. The Kashgar-Yecheng transfer system (KYTS) is the main dextral slip shear zone separating Tarim from the Eastern Pamir, with an estimated cumulative offset of similar to 280 km at an average late Cenozoic dextral slip rate of 11-15 mm/a (Cowgill, 2010). In order to better constrain the slip history of the KYTS, we collected thermochronologic samples along the eastward-flowing, deeply incised, antecedent Tashkorgan-Yarkand River, which crosses the fault system on the eastern flank of the orogen. We present 29 new biotite (40)Ar/(39)Ar ages, apatite and zircon (U-Th-Sm)/He ages, and apatite fission track (AFT) analysis, combined with published muscovite and biotite (40)Ar/(39)Ar and AFT data, to create a unique thermochronologic dataset in this poorly studied and remote region. We constrain the timing of four major N-trending faults: the latter three are strands of the KYTS. The westernmost, the Kuke fault, experienced significant dip-slip, west-side-up displacement between > 12 and 6 Ma. To the east, within the KYTS, our new thermochronologic data and geomorphic observations suggest that the Kumtag and Kusilaf dextral slip faults have been inactive since at least 3-5 Ma. Long-term incision rates across the Aertashi dextral slip fault, the easternmost strand of the KYTS, are compatible with slow horizontal slip rates of 1.7-5.3 mm/a over the past 3 to 5 Ma. In summary, these data show that the slip rate of the KYTS decreased substantially during the late Miocene or Pliocene. Furthermore, Miocene-present regional kinematic reconstructions suggest that this deceleration reflects the substantial increase of northward motion of Tarim rather than a significant decrease of the northward velocity of the Pamir. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{SobelChenSchoenbohmetal.2013, author = {Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.009}, pages = {204 -- 218}, year = {2013}, abstract = {The northern part of the Pamir orogen is the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundaries because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent tectonic and erosion processes. In the Pamir, it has been assumed that most of the plate convergence was accommodated by overthrusting along the plate-bounding Main Pamir Thrust (MPT), which forms the principal northern mountain and deformation front of the Pamir. However, the synopsis of our new and previously published thermochronologic data from this region shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate, with the bulk of the convergence accommodated by underthrusting. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to this rollback. The onset of south-dipping subduction is tentatively linked to intense Pamir contraction following break-off of the north-dipping Indian slab beneath the Karakoram.}, language = {en} } @article{ThiedeSobelChenetal.2013, author = {Thiede, Rasmus Christoph and Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20050}, pages = {763 -- 779}, year = {2013}, abstract = {The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin.}, language = {en} }