@phdthesis{Yadav2023, author = {Yadav, Himanshu}, title = {A computational evaluation of feature distortion and cue weighting in sentence comprehension}, doi = {10.25932/publishup-58505}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585055}, school = {Universit{\"a}t Potsdam}, pages = {iv, 115}, year = {2023}, abstract = {Successful sentence comprehension requires the comprehender to correctly figure out who did what to whom. For example, in the sentence John kicked the ball, the comprehender has to figure out who did the action of kicking and what was being kicked. This process of identifying and connecting the syntactically-related words in a sentence is called dependency completion. What are the cognitive constraints that determine dependency completion? A widely-accepted theory is cue-based retrieval. The theory maintains that dependency completion is driven by a content-addressable search for the co-dependents in memory. The cue-based retrieval explains a wide range of empirical data from several constructions including subject-verb agreement, subject-verb non-agreement, plausibility mismatch configurations, and negative polarity items. However, there are two major empirical challenges to the theory: (i) Grammatical sentences' data from subject-verb number agreement dependencies, where the theory predicts a slowdown at the verb in sentences like the key to the cabinet was rusty compared to the key to the cabinets was rusty, but the data are inconsistent with this prediction; and, (ii) Data from antecedent-reflexive dependencies, where a facilitation in reading times is predicted at the reflexive in the bodybuilder who worked with the trainers injured themselves vs. the bodybuilder who worked with the trainer injured themselves, but the data do not show a facilitatory effect. The work presented in this dissertation is dedicated to building a more general theory of dependency completion that can account for the above two datasets without losing the original empirical coverage of the cue-based retrieval assumption. In two journal articles, I present computational modeling work that addresses the above two empirical challenges. To explain the grammatical sentences' data from subject-verb number agreement dependencies, I propose a new model that assumes that the cue-based retrieval operates on a probabilistically distorted representation of nouns in memory (Article I). This hybrid distortion-plus-retrieval model was compared against the existing candidate models using data from 17 studies on subject-verb number agreement in 4 languages. I find that the hybrid model outperforms the existing models of number agreement processing suggesting that the cue-based retrieval theory must incorporate a feature distortion assumption. To account for the absence of facilitatory effect in antecedent-reflexive dependen� cies, I propose an individual difference model, which was built within the cue-based retrieval framework (Article II). The model assumes that individuals may differ in how strongly they weigh a syntactic cue over a number cue. The model was fitted to data from two studies on antecedent-reflexive dependencies, and the participant-level cue-weighting was estimated. We find that one-fourth of the participants, in both studies, weigh the syntactic cue higher than the number cue in processing reflexive dependencies and the remaining participants weigh the two cues equally. The result indicates that the absence of predicted facilitatory effect at the level of grouped data is driven by some, not all, participants who weigh syntactic cues higher than the number cue. More generally, the result demonstrates that the assumption of differential cue weighting is important for a theory of dependency completion processes. This differential cue weighting idea was independently supported by a modeling study on subject-verb non-agreement dependencies (Article III). Overall, the cue-based retrieval, which is a general theory of dependency completion, needs to incorporate two new assumptions: (i) the nouns stored in memory can undergo probabilistic feature distortion, and (ii) the linguistic cues used for retrieval can be weighted differentially. This is the cumulative result of the modeling work presented in this dissertation. The dissertation makes an important theoretical contribution: Sentence comprehension in humans is driven by a mechanism that assumes cue-based retrieval, probabilistic feature distortion, and differential cue weighting. This insight is theoretically important because there is some independent support for these three assumptions in sentence processing and the broader memory literature. The modeling work presented here is also methodologically important because for the first time, it demonstrates (i) how the complex models of sentence processing can be evaluated using data from multiple studies simultaneously, without oversimplifying the models, and (ii) how the inferences drawn from the individual-level behavior can be used in theory development.}, language = {en} } @phdthesis{Pregla2023, author = {Pregla, Dorothea}, title = {Variability in sentence processing performance in German people with aphasia and unimpaired German native speakers}, doi = {10.25932/publishup-61420}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-614201}, school = {Universit{\"a}t Potsdam}, pages = {171}, year = {2023}, abstract = {Individuals with aphasia vary in the speed and accuracy they perform sentence comprehension tasks. Previous results indicate that the performance patterns of individuals with aphasia vary between tasks (e.g., Caplan, DeDe, \& Michaud, 2006; Caplan, Michaud, \& Hufford, 2013a). Similarly, it has been found that the comprehension performance of individuals with aphasia varies between homogeneous test sentences within and between sessions (e.g., McNeil, Hageman, \& Matthews, 2005). These studies ascribed the variability in the performance of individuals with aphasia to random noise. This conclusion would be in line with an influential theory on sentence comprehension in aphasia, the resource reduction hypothesis (Caplan, 2012). However, previous studies did not directly compare variability in language-impaired and language-unimpaired adults. Thus, it is still unclear how the variability in sentence comprehension differs between individuals with and without aphasia. Furthermore, the previous studies were exclusively carried out in English. Therefore, the findings on variability in sentence processing in English still need to be replicated in a different language. This dissertation aims to give a systematic overview of the patterns of variability in sentence comprehension performance in aphasia in German and, based on this overview, to put the resource reduction hypothesis to the test. In order to reach the first aim, variability was considered on three different dimensions (persons, measures, and occasions) following the classification by Hultsch, Strauss, Hunter, and MacDonald (2011). At the dimension of persons, the thesis compared the performance of individuals with aphasia and language-unimpaired adults. At the dimension of measures, this work explored the performance across different sentence comprehension tasks (object manipulation, sentence-picture matching). Finally, at the dimension of occasions, this work compared the performance in each task between two test sessions. Several methods were combined to study variability to gain a large and diverse database. In addition to the offline comprehension tasks, the self-paced-listening paradigm and the visual world eye-tracking paradigm were used in this work. The findings are in line with the previous results. As in the previous studies, variability in sentence comprehension in individuals with aphasia emerged between test sessions and between tasks. Additionally, it was possible to characterize the variability further using hierarchical Bayesian models. For individuals with aphasia, it was shown that both between-task and between-session variability are unsystematic. In contrast to that, language-unimpaired individuals exhibited systematic differences between measures and between sessions. However, these systematic differences occurred only in the offline tasks. Hence, variability in sentence comprehension differed between language-impaired and language-unimpaired adults, and this difference could be narrowed down to the offline measures. Based on this overview of the patterns of variability, the resource reduction hypothesis was evaluated. According to the hypothesis, the variability in the performance of individuals with aphasia can be ascribed to random fluctuations in the resources available for sentence processing. Given that the performance of the individuals with aphasia varied unsystematically, the results support the resource reduction hypothesis. Furthermore, the thesis proposes that the differences in variability between language-impaired and language-unimpaired adults can also be explained by the resource reduction hypothesis. More specifically, it is suggested that the systematic changes in the performance of language-unimpaired adults are due to decreasing fluctuations in available processing resources. In parallel, the unsystematic variability in the performance of individuals with aphasia could be due to constant fluctuations in available processing resources. In conclusion, the systematic investigation of variability contributes to a better understanding of language processing in aphasia and thus enriches aphasia research.}, language = {en} }