@inproceedings{Grum2022, author = {Grum, Marcus}, title = {Context-aware, intelligent musical instruments for improving knowledge-intensive business processes}, series = {Business modeling and software design}, volume = {453}, booktitle = {Business modeling and software design}, editor = {Shishkov, Boris}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-11509-7}, doi = {10.1007/978-3-031-11510-3_5}, pages = {69 -- 88}, year = {2022}, abstract = {With shorter song publication cycles in music industries and a reduced number of physical contact opportunities because of disruptions that may be an obstacle for musicians to cooperate, collaborative time consumption is a highly relevant target factor providing a chance for feedback in contemporary music production processes. This work aims to extend prior research on knowledge transfer velocity by augmenting traditional designs of musical instruments with (I) Digital Twins, (II) Internet of Things and (III) Cyber-Physical System capabilities and consider a new type of musical instrument as a tool to improve knowledge transfers at knowledge-intensive forms of business processes. In a design-science-oriented way, a prototype of a sensitive guitar is constructed as information and cyber-physical system. Findings show that this intelligent SensGuitar increases feedback opportunities. This study establishes the importance of conversion-specific music production processes and novel forms of interactions at guitar playing as drivers of high knowledge transfer velocities in teams and among individuals.}, language = {en} } @inproceedings{GrumBenderGronauetal.2020, author = {Grum, Marcus and Bender, Benedict and Gronau, Norbert and Alfa, Attahiru S.}, title = {Efficient task realizations in networked production infrastructures}, series = {Proceedings of the Conference on Production Systems and Logistics}, booktitle = {Proceedings of the Conference on Production Systems and Logistics}, publisher = {publish-Ing.}, address = {Hannover}, doi = {10.15488/9682}, pages = {397 -- 407}, year = {2020}, abstract = {As Industry 4.0 infrastructures are seen as highly evolutionary environment with volatile, and time-dependent workloads for analytical tasks, particularly the optimal dimensioning of IT hardware is a challenge for decision makers because the digital processing of these tasks can be decoupled from their physical place of origin. Flexible architecture models to allocate tasks efficiently with regard to multi-facet aspects and a predefined set of local systems and external cloud services have been proven in small example scenarios. This paper provides a benchmark of existing task realization strategies, composed of (1) task distribution and (2) task prioritization in a real-world scenario simulation. It identifies heuristics as superior strategies.}, language = {en} } @article{LassGronau2020, author = {Lass, Sander and Gronau, Norbert}, title = {A factory operating system for extending existing factories to Industry 4.0}, series = {Computers in industry : an international, application oriented research journal}, volume = {115}, journal = {Computers in industry : an international, application oriented research journal}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0166-3615}, doi = {10.1016/j.compind.2019.103128}, pages = {8}, year = {2020}, abstract = {Cyber-physical systems (CPS) have shaped the discussion about Industry 4.0 (I4.0) for some time. To ensure the competitiveness of manufacturing enterprises the vision for the future figures out cyber-physical production systems (CPPS) as a core component of a modern factory. Adaptability and coping with complexity are (among others) potentials of this new generation of production management. The successful transformation of this theoretical construct into practical implementation can only take place with regard to the conditions characterizing the context of a factory. The subject of this contribution is a concept that takes up the brownfield character and describes a solution for extending existing (legacy) systems with CPS capabilities.}, language = {en} } @misc{GrumGronau2018, author = {Grum, Marcus and Gronau, Norbert}, title = {Process modeling within augmented reality}, series = {Business Modeling and Software Design, BMSD 2018}, volume = {319}, journal = {Business Modeling and Software Design, BMSD 2018}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-319-94214-8}, issn = {1865-1348}, doi = {10.1007/978-3-319-94214-8_7}, pages = {99 -- 115}, year = {2018}, abstract = {The collaboration during the modeling process is uncomfortable and characterized by various limitations. Faced with the successful transfer of first process modeling languages to the augmented world, non-transparent processes can be visualized in a more comprehensive way. With the aim to rise comfortability, speed, accuracy and manifoldness of real world process augmentations, a framework for the bidirectional interplay of the common process modeling world and the augmented world has been designed as morphologic box. Its demonstration proves the working of drawn AR integrations. Identified dimensions were derived from (1) a designed knowledge construction axiom, (2) a designed meta-model, (3) designed use cases and (4) designed directional interplay modes. Through a workshop-based survey, the so far best AR modeling configuration is identified, which can serve for benchmarks and implementations.}, language = {en} }