@article{BorchardtTrauth2021, author = {Borchardt, Sven and Trauth, Martin H.}, title = {Erratum to: Borchardt, Sven, Trauth, Martin H.: Remotely-sensed evapotranspiration estimates for an improved hydrological modeling of the early Holocene mega-lake Suguta, northern Kenya Rift. - (Palaeogeography, Palaeoclimatology, Palaeoecology. - Volumes 361-362 (2012), S. 14 - 20. - doi.org/10.1016/j.palaeo.2012.07.009)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {571}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2019.109540}, pages = {1}, year = {2021}, language = {en} } @article{Trauth2021, author = {Trauth, Martin H.}, title = {Spectral analysis in quaternary sciences}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {270}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2021.107157}, pages = {13}, year = {2021}, abstract = {Spectral analysis is a technique of time-series analysis that decomposes signals into linear combinations of harmonic components. Rooted in the 19th century, spectral analysis gained popularity in palaeoclimatology since the early 1980s. This was partly due to the availability of long time series of past climates, but also the development of new, partly adapted methods and the increasing spread of affordable personal computers. This paper reviews the most important methods of spectral analysis for palaeoclimate time series and discusses the prerequisites for their application as well as advantages and disadvantages. The paper also offers an overview of suitable software, as well as computer code for using the methods on synthetic examples.}, language = {en} }