@phdthesis{Harding2016, author = {Harding, Eleanor Elizabeth}, title = {Neurocognitive entrainment to meter influences syntactic comprehension in music and language}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-102258}, school = {Universit{\"a}t Potsdam}, pages = {vi, 318}, year = {2016}, abstract = {Meter and syntax have overlapping elements in music and speech domains, and individual differences have been documented in both meter perception and syntactic comprehension paradigms. Previous evidence insinuated but never fully explored the relationship that metrical structure has to syntactic comprehension, the comparability of these processes across music and language domains, and the respective role of individual differences. This dissertation aimed to investigate neurocognitive entrainment to meter in music and language, the impact that neurocognitive entrainment had on syntactic comprehension, and whether individual differences in musical expertise, temporal perception and working memory played a role during these processes. A theoretical framework was developed, which linked neural entrainment, cognitive entrainment, and syntactic comprehension while detailing previously documented effects of individual differences on meter perception and syntactic comprehension. The framework was developed in both music and language domains and was tested using behavioral and EEG methods across three studies (seven experiments). In order to satisfy empirical evaluation of neurocognitive entrainment and syntactic aspects of the framework, original melodies and sentences were composed. Each item had four permutations: regular and irregular metricality, based on the hierarchical organization of strong and weak notes and syllables, and preferred and non-preferred syntax, based on structurally alternate endings. The framework predicted — for both music and language domains — greater neurocognitive entrainment in regular compared to irregular metricality conditions, and accordingly, better syntactic integration in regular compared to irregular metricality conditions. Individual differences among participants were expected for both entrainment and syntactic processes. Altogether, the dissertation was able to support a holistic account of neurocognitive entrainment to musical meter and its subsequent influence on syntactic integration of melodies, with musician participants. The theoretical predictions were not upheld in the language domain with musician participants, but initial behavioral evidence in combination with previous EEG evidence suggest that perhaps non-musician language EEG data would support the framework's predictions. Musicians' deviation from hypothesized results in the language domain were suspected to reflect heightened perception of acoustic features stemming from musical training, which caused current 'overly' regular stimuli to distract the cognitive system. The individual-differences approach was vindicated by the surfacing of two factors scores, Verbal Working Memory and Time and Pitch Discrimination, which in turn correlated with multiple experimental data across the three studies.}, language = {en} } @article{HodappGrimm2021, author = {Hodapp, Alice and Grimm, Sabine}, title = {Neural signatures of temporal regularity and recurring patterns in random tonal sound sequences}, series = {European journal of neuroscience : EJN / European Neuroscience Association}, volume = {53}, journal = {European journal of neuroscience : EJN / European Neuroscience Association}, number = {8}, publisher = {Wiley}, address = {Oxford}, issn = {0953-816X}, doi = {10.1111/ejn.15123}, pages = {2740 -- 2754}, year = {2021}, abstract = {The auditory system is highly sensitive to recurring patterns in the acoustic input - even in otherwise unstructured material, such as white noise or random tonal sequences. Electroencephalography (EEG) research revealed a characteristic negative potential to periodically recurring auditory patterns - a response, which has been interpreted as memory trace-related and specific, rather than as a sign of periodicity-driven entrainment. Here, we aim to disentangle these two possible contributions by investigating the influence of a periodic sound sequence's inherent temporal regularity on event-related potentials. Participants were presented continuous sequences of short tones of random pitch, with some sequences containing a recurring pattern, and asked to indicate whether they heard a repetition. Patterns were either spaced equally across the random sequence (isochronous condition) or with a temporal jitter (jittered condition), which enabled us to differentiate between event-related potentials (and thus processing operations associated with a memory trace for a repeated pattern) and the periodic nature of the repetitions. A negative recurrence-related component could be observed independently of temporal regularity, was pattern-specific, and modulated by across trial repetition of the pattern. Critically, isochronous pattern repetition induced an additional early periodicity-related positive component, which started to build up already before the pattern onset and which was elicited undampedly even when the repeated pattern was occasionally not presented. This positive component likely reflects a sensory driven entrainment process that could be the foundation of a behavioural benefit in detecting temporally regular repetitions.}, language = {en} }