@article{LinckeAppeltauerSteinertetal.2011, author = {Lincke, Jens and Appeltauer, Malte and Steinert, Bastian and Hirschfeld, Robert}, title = {An open implementation for context-oriented layer composition in ContextJS}, series = {Science of computer programming}, volume = {76}, journal = {Science of computer programming}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-6423}, doi = {10.1016/j.scico.2010.11.013}, pages = {1194 -- 1209}, year = {2011}, abstract = {Context-oriented programming (COP) provides dedicated support for defining and composing variations to a basic program behavior. A variation, which is defined within a layer, can be de-/activated for the dynamic extent of a code block. While this mechanism allows for control flow-specific scoping, expressing behavior adaptations can demand alternative scopes. For instance, adaptations can depend on dynamic object structure rather than control flow. We present scenarios for behavior adaptation and identify the need for new scoping mechanisms. The increasing number of scoping mechanisms calls for new language abstractions representing them. We suggest to open the implementation of scoping mechanisms so that developers can extend the COP language core according to their specific needs. Our open implementation moves layer composition into objects to be affected and with that closer to the method dispatch to be changed. We discuss the implementation of established COP scoping mechanisms using our approach and present new scoping mechanisms developed for our enhancements to Lively Kernel.}, language = {en} } @phdthesis{Steinert2014, author = {Steinert, Bastian}, title = {Built-in recovery support for explorative programming}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71305}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {This work introduces concepts and corresponding tool support to enable a complementary approach in dealing with recovery. Programmers need to recover a development state, or a part thereof, when previously made changes reveal undesired implications. However, when the need arises suddenly and unexpectedly, recovery often involves expensive and tedious work. To avoid tedious work, literature recommends keeping away from unexpected recovery demands by following a structured and disciplined approach, which consists of the application of various best practices including working only on one thing at a time, performing small steps, as well as making proper use of versioning and testing tools. However, the attempt to avoid unexpected recovery is both time-consuming and error-prone. On the one hand, it requires disproportionate effort to minimize the risk of unexpected situations. On the other hand, applying recommended practices selectively, which saves time, can hardly avoid recovery. In addition, the constant need for foresight and self-control has unfavorable implications. It is exhaustive and impedes creative problem solving. This work proposes to make recovery fast and easy and introduces corresponding support called CoExist. Such dedicated support turns situations of unanticipated recovery from tedious experiences into pleasant ones. It makes recovery fast and easy to accomplish, even if explicit commits are unavailable or tests have been ignored for some time. When mistakes and unexpected insights are no longer associated with tedious corrective actions, programmers are encouraged to change source code as a means to reason about it, as opposed to making changes only after structuring and evaluating them mentally. This work further reports on an implementation of the proposed tool support in the Squeak/Smalltalk development environment. The development of the tools has been accompanied by regular performance and usability tests. In addition, this work investigates whether the proposed tools affect programmers' performance. In a controlled lab study, 22 participants improved the design of two different applications. Using a repeated measurement setup, the study examined the effect of providing CoExist on programming performance. The result of analyzing 88 hours of programming suggests that built-in recovery support as provided with CoExist positively has a positive effect on programming performance in explorative programming tasks.}, language = {en} } @article{SteinertThamsenFelgentreffetal.2015, author = {Steinert, Bastian and Thamsen, Lauritz and Felgentreff, Tim and Hirschfeld, Robert}, title = {Object Versioning to Support Recovery Needs Using Proxies to Preserve Previous Development States in Lively}, series = {ACM SIGPLAN notices}, volume = {50}, journal = {ACM SIGPLAN notices}, number = {2}, publisher = {Association for Computing Machinery}, address = {New York}, issn = {0362-1340}, doi = {10.1145/2661088.2661093}, pages = {113 -- 124}, year = {2015}, abstract = {We present object versioning as a generic approach to preserve access to previous development and application states. Version-aware references can manage the modifications made to the target object and record versions as desired. Such references can be provided without modifications to the virtual machine. We used proxies to implement the proposed concepts and demonstrate the Lively Kernel running on top of this object versioning layer. This enables Lively users to undo the effects of direct manipulation and other programming actions.}, language = {en} }