@phdthesis{Schifferle2024, author = {Schifferle, Lukas}, title = {Optical properties of (Mg,Fe)O at high pressure}, doi = {10.25932/publishup-62216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622166}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 90}, year = {2024}, abstract = {Large parts of the Earth's interior are inaccessible to direct observation, yet global geodynamic processes are governed by the physical material properties under extreme pressure and temperature conditions. It is therefore essential to investigate the deep Earth's physical properties through in-situ laboratory experiments. With this goal in mind, the optical properties of mantle minerals at high pressure offer a unique way to determine a variety of physical properties, in a straight-forward, reproducible, and time-effective manner, thus providing valuable insights into the physical processes of the deep Earth. This thesis focusses on the system Mg-Fe-O, specifically on the optical properties of periclase (MgO) and its iron-bearing variant ferropericlase ((Mg,Fe)O), forming a major planetary building block. The primary objective is to establish links between physical material properties and optical properties. In particular the spin transition in ferropericlase, the second-most abundant phase of the lower mantle, is known to change the physical material properties. Although the spin transition region likely extends down to the core-mantle boundary, the ef-fects of the mixed-spin state, where both high- and low-spin state are present, remains poorly constrained. In the studies presented herein, we show how optical properties are linked to physical properties such as electrical conductivity, radiative thermal conductivity and viscosity. We also show how the optical properties reveal changes in the chemical bonding. Furthermore, we unveil how the chemical bonding, the optical and other physical properties are affected by the iron spin transition. We find opposing trends in the pres-sure dependence of the refractive index of MgO and (Mg,Fe)O. From 1 atm to ~140 GPa, the refractive index of MgO decreases by ~2.4\% from 1.737 to 1.696 (±0.017). In contrast, the refractive index of (Mg0.87Fe0.13)O (Fp13) and (Mg0.76Fe0.24)O (Fp24) ferropericlase increases with pressure, likely because Fe Fe interactions between adjacent iron sites hinder a strong decrease of polarizability, as it is observed with increasing density in the case of pure MgO. An analysis of the index dispersion in MgO (decreasing by ~23\% from 1 atm to ~103 GPa) reflects a widening of the band gap from ~7.4 eV at 1 atm to ~8.5 (±0.6) eV at ~103 GPa. The index dispersion (between 550 and 870 nm) of Fp13 reveals a decrease by a factor of ~3 over the spin transition range (~44-100 GPa). We show that the electrical band gap of ferropericlase significantly widens up to ~4.7 eV in the mixed spin region, equivalent to an increase by a factor of ~1.7. We propose that this is due to a lower electron mobility between adjacent Fe2+ sites of opposite spin, explaining the previously observed low electrical conductivity in the mixed spin region. From the study of absorbance spectra in Fp13, we show an increasing covalency of the Fe-O bond with pressure for high-spin ferropericlase, whereas in the low-spin state a trend to a more ionic nature of the Fe-O bond is observed, indicating a bond weakening effect of the spin transition. We found that the spin transition is ultimately caused by both an increase of the ligand field-splitting energy and a decreasing spin-pairing energy of high-spin Fe2+.}, language = {en} } @article{BlanchardAbeykoonFrostetal.2021, author = {Blanchard, Ingrid and Abeykoon, Sumith and Frost, Daniel J. and Rubie, David C.}, title = {Sulfur content at sulfide saturation of peridotitic melt at upper mantle conditions}, series = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, volume = {106}, journal = {American mineralogist : an international journal of earth and planetary materials / Mineralogical Society of America}, number = {11}, publisher = {Mineralogical Society of America}, address = {Washington, DC [u.a.]}, issn = {0003-004X}, doi = {10.2138/am-2021-7649}, pages = {1835 -- 1843}, year = {2021}, abstract = {The concentration of sulfur that can be dissolved in a silicate liquid is of fundamental importance because it is closely associated with several major Earth-related processes. Considerable effort has been made to understand the interplay between the effects of silicate melt composition and its capac-ity to retain sulfur, but the dependence on pressure and temperature is mostly based on experiments performed at pressures and temperatures below 6 GPa and 2073 K. Here we present a study of the effects of pressure and temperature on sulfur content at sulfide saturation of a peridotitic liquid. We performed 14 multi-anvil experiments using a peridotitic starting composition, and we produced 25 new measurements at conditions ranging from 7 to 23 GPa and 2173 to 2623 K. We analyzed the recovered samples using both electron microprobe and laser ablation ICP-MS. We compiled our data together with previously published data that were obtained at lower P-T conditions and with various silicate melt compositions. We present a new model based on this combined data set that encompasses the entire range of upper mantle pressure-temperature conditions, along with the effect of a wide range of silicate melt compositions. Our findings are consistent with earlier work based on extrapolation from lower-pressure and lower-temperature experiments and show a decrease of sulfur content at sulfide saturation (SCSS) with increasing pressure and an increase of SCSS with increasing temperature. We have extrapolated our results to pressure-temperature conditions of the Earth's primitive magma ocean, and show that FeS will exsolve from the molten silicate and can effectively be extracted to the core by a process that has been termed the "Hadean Matte." We also discuss briefly the implications of our results for the lunar magma ocean.}, language = {en} } @article{MuellerBeckmannDobsonetal.2014, author = {M{\"u}ller, Hans J. and Beckmann, Felix and Dobson, David P. and Hunt, Simon A. and Lathe, Christian and Stroncik, Nicole}, title = {New techniques for high pressure falling sphere viscosimetry in DIA-type large volume presses}, series = {High pressure research}, volume = {34}, journal = {High pressure research}, number = {3}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0895-7959}, doi = {10.1080/08957959.2014.950262}, pages = {345 -- 354}, year = {2014}, language = {en} }