@article{IllienSensSchoenfelderAndermannetal.2022, author = {Illien, Luc and Sens-Sch{\"o}nfelder, Christoph and Andermann, Christoff and Marc, Odin and Cook, Kristen L. and Adhikari, Lok Bijaya and Hovius, Niels}, title = {Seismic velocity recovery in the subsurface}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB023402}, pages = {18}, year = {2022}, abstract = {Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations delta v retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 M-w 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the delta v data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for similar to 6 months and is shorter than the damage relaxation (similar to 1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery.}, language = {en} } @phdthesis{Illien2023, author = {Illien, Luc}, title = {Time-dependent properties of the shallow subsurface}, doi = {10.25932/publishup-59936}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599367}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2023}, abstract = {The shallow Earth's layers are at the interplay of many physical processes: some being driven by atmospheric forcing (precipitation, temperature...) whereas others take their origins at depth, for instance ground shaking due to seismic activity. These forcings cause the subsurface to continuously change its mechanical properties, therefore modulating the strength of the surface geomaterials and hydrological fluxes. Because our societies settle and rely on the layers hosting these time-dependent properties, constraining the hydro-mechanical dynamics of the shallow subsurface is crucial for our future geographical development. One way to investigate the ever-changing physical changes occurring under our feet is through the inference of seismic velocity changes from ambient noise, a technique called seismic interferometry. In this dissertation, I use this method to monitor the evolution of groundwater storage and damage induced by earthquakes. Two research lines are investigated that comprise the key controls of groundwater recharge in steep landscapes and the predictability and duration of the transient physical properties due to earthquake ground shaking. These two types of dynamics modulate each other and influence the velocity changes in ways that are challenging to disentangle. A part of my doctoral research also addresses this interaction. Seismic data from a range of field settings spanning several climatic conditions (wet to arid climate) in various seismic-prone areas are considered. I constrain the obtained seismic velocity time-series using simple physical models, independent dataset, geophysical tools and nonlinear analysis. Additionally, a methodological development is proposed to improve the time-resolution of passive seismic monitoring.}, language = {en} }