@article{GarcinSchildgenAcostaetal.2017, author = {Garcin, Yannick and Schildgen, Taylor F. and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period}, series = {Earth \& planetary science letters}, volume = {459}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2016.11.017}, pages = {58 -- 69}, year = {2017}, abstract = {The African Humid Period (AHP) between similar to 15 and 5.5 cal. kyr BP caused major environmental change in East Africa, including filling of the Suguta Valley in the northern Kenya Rift with an extensive (similar to 2150 km(2)), deep (similar to 300 m) lake. Interfingering fluvio-lacustrine deposits of the Baragoi paleo-delta provide insights into the lake-level history and how erosion rates changed during this time, as revealed by delta-volume estimates and the concentration of cosmogenic Be-10 in fluvial sand. Erosion rates derived from delta-volume estimates range from 0.019 to 0.03 mm yr(-1). Be-10-derived paleo-erosion rates at similar to 11.8 cal. kyr BP ranged from 0.035 to 0.086 mm yr(-1), and were 2.7 to 6.6 times faster than at present. In contrast, at similar to 8.7 cal. kyr BP, erosion rates were only 1.8 times faster than at present. Because Be-10-derived erosion rates integrate over several millennia; we modeled the erosion-rate history that best explains the 10Be data using established non-linear equations that describe in situ cosmogenic isotope production and decay. Two models with different temporal constraints (15-6.7 and 12-6.7 kyr) suggest erosion rates that were 25 to 300 times higher than the initial erosion rate (pre-delta formation). That pulse of high erosion rates was short (similar to 4 kyr or less) and must have been followed by a rapid decrease in rates while climate remained humid to reach the modern Be-10-based erosion rate of,similar to 0.013 mm yr(-1). Our simulations also flag the two highest Be-10-derived erosion rates at 11.8 kyr BP related to nonuniform catchment erosion. These changes in erosion rates and processes during the AHP may reflect a strong increase in precipitation, runoff, and erosivity at the arid-to-humid transition either at 15 or similar to 12 cal. kyr BP, before the landscape stabilized again, possibly due to increased soil production and denser vegetation.}, language = {en} } @article{TrauthFoersterJungingeretal.2018, author = {Trauth, Martin H. and Foerster, Verena and Junginger, Annett and Asrat, Asfawossen and Lamb, Henry F. and Sch{\"a}bitz, Frank}, title = {Abrupt or gradual?}, series = {Quaternary research : an interdisciplinary journal}, volume = {90}, journal = {Quaternary research : an interdisciplinary journal}, number = {2}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0033-5894}, doi = {10.1017/qua.2018.30}, pages = {321 -- 330}, year = {2018}, abstract = {We used a change point analysis on a late Pleistocene-Holocene lake-sediment record from the Chew Bahir basin in the southern Ethiopian Rift to determine the amplitude and duration of past climate transitions. The most dramatic changes occurred over 240 yr (from similar to 15,700 to 15,460 yr) during the onset of the African Humid Period (AHP), and over 990 yr (from similar to 4875 to 3885 yr) during its protracted termination. The AHP was interrupted by a distinct dry period coinciding with the high-latitude Younger Dryas stadial, which had an abrupt onset (less than similar to 100 yr) at similar to 13,260 yr and lasted until similar to 11,730 yr. Wet-dry-wet transitions prior to the AHP may reflect the high-latitude Dansgaard-Oeschger cycles, as indicated by cross-correlation of the potassium record with the NorthGRIP ice core record between similar to 45-20 ka. These findings may contribute to the debates regarding the amplitude, and duration and mechanisms of past climate transitions, and their possible influence on the development of early modern human cultures.}, language = {en} } @article{JungingerRollerOlakaetal.2014, author = {Junginger, Annett and Roller, Sybille and Olaka, Lydia A. and Trauth, Martin H.}, title = {The effects of solar irradiation changes on the migration of the Congo Air Boundary and water levels of paleo-Lake Suguta, Northern Kenya Rift, during the African Humid Period (15-5 ka BP)}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {396}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2013.12.007}, pages = {1 -- 16}, year = {2014}, abstract = {The water-level record from the 300 m deep paleo-lake Suguta (Northern Kenya Rift) during the African Humid Period (AHP, 15-5 ka BP) helps to explain decadal to centennial intensity variations in the West African Monsoon (WAM) and the Indian Summer Monsoon (ISM). This water-level record was derived from three different sources: (1) grain size variations in radiocarbon dated and reservoir corrected lacustrine sediments, (2) the altitudes and ages of paleo-shorelines within the basin, and (3) the results of hydro-balance modeling, providing important insights into the character of water level variations (abrupt or gradual) in the amplifier paleo-Lake Suguta. The results of these comprehensive analyses suggest that the AHP highstand in the Suguta Valley was the direct consequence of a northeastwards shift in the Congo Air Boundary (CAB), which was in turn caused by an enhanced atmospheric pressure gradient between East Africa and India during a northern hemisphere insolation maximum. Rapidly decreasing water levels of up to 90 m over less than a hundred years are best explained by changes in solar irradiation either reducing the East African-Indian atmospheric pressure gradient and preventing the CAB from reaching the study area, or reducing the overall humidity in the atmosphere, or a combination of both these effects. In contrast, although not well documented in our record we hypothesize a gradual end of the AHP despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the Suguta Valley. The abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during October. Whether or not this is the case, the water-level record from the Suguta Valley demonstrates the importance of both orbitally-controlled insolation variations and short-term changes in solar irradiation as factors affecting the significant water level variations in East African rift lakes.}, language = {en} } @article{GarcinMelnickStreckeretal.2012, author = {Garcin, Yannick and Melnick, Daniel and Strecker, Manfred and Olago, Daniel and Tiercelin, Jean-Jacques}, title = {East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift}, series = {Earth \& planetary science letters}, volume = {331}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.03.016}, pages = {322 -- 334}, year = {2012}, abstract = {The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (similar to 5270 +/- 300 cal. yr BP), however, the lake water-level fell by similar to 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System. (}, language = {en} } @article{JungingerTrauth2013, author = {Junginger, Annett and Trauth, Martin H.}, title = {Hydrological constraints of paleo-Lake Suguta in the Northern Kenya Rift during the African Humid Period (15-5 ka BP)}, series = {Global and planetary change}, volume = {111}, journal = {Global and planetary change}, number = {12}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0921-8181}, doi = {10.1016/j.gloplacha.2013.09.005}, pages = {174 -- 188}, year = {2013}, abstract = {During the African Humid Period (AHP, 15-5 ka BP) an almost 300 m deep paleo-lake covering 2200 km(2) developed in the Suguta Valley, in the Northern Kenya Rift Data from lacustrine sediments and paleo-shorelines indicate that a large paleo-lake already existed by 13.9 ka BP, and record rapid water level fluctuations of up to 100 m within periods of 100 years or less, and a final lowstand at the end of the AHP (5 ka BP). We used a hydro-balance model to assess the abruptness of these water level fluctuations and identify their causes. We observed that fluctuations within the AHP were caused by abrupt changes in precipitation of 26-40\%. Despite the absence of continuous lacustrine data documenting the onset of the AHP in the Suguta Valley, we conclude from the hydro-balance model that only an abrupt onset to the AHP, prior to 14.8 ka BP, could have led to high water levels recorded. The modeling results suggest that the sudden increase in rainfall was the direct consequence of an eastward migration of the Congo Air Boundary (CAB), caused by an enhanced atmospheric pressure gradient between East Africa and southern Asia during a northern hemisphere (NH) summer insolation maximum. In contrast the end of the AHP must have been gradual despite an abrupt change in the source of precipitation when a decreasing pressure gradient between Asia and Africa prevented the CAB from reaching the study area. This abruptness was probably buffered by a contemporaneous change in precession producing an insolation maximum at the equator during September-October. This change would have meant that the only rain source was the Intertropical Convergence Zone (IT CZ), which would have carried a greater amount of moisture during the short rainy season thus slowing the fall in water level over a period of about 1000 years in association with the reduction in insolation. The results of this study provide an indication of the amount of time available for humans in north-eastern Africa to adapt in response to a changing climate, from hunting and gathering to farming and herding.}, language = {en} }