@article{KumarGuntuAgarwaletal.2022, author = {Kumar, Satish and Guntu, Ravi Kumar and Agarwal, Ankit and Villuri, Vasant Govind Kumar and Pasupuleti, Srinivas and Kaushal, Deo Raj and Gosian, Ashwin Kumar and Bronstert, Axel}, title = {Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi}, series = {Journal of hydrology}, volume = {606}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2022.127455}, pages = {16}, year = {2022}, abstract = {Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22\%-24\% runoff reductions for the same expenditures in watershed 1 and 23\%-26\% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses.}, language = {en} } @misc{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred F. and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56876}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568766}, pages = {18}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @article{MtilatilaBronstertBuergeretal.2020, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and B{\"u}rger, Gerd and Vormoor, Klaus Josef}, title = {Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970-2013)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {65}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {16}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1837384}, pages = {2750 -- 2764}, year = {2020}, abstract = {The study assesses the variability and trends of both meteorological and hydrological droughts from 1970 to 2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. Trends and slopes in droughts and drought drivers are estimated using Mann-Kendall test and Sen's slope, respectively. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions, since the 36-month SPEI can predict hydrological droughts 10 months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m a.s.l. The increase in drought is a concern as this will have serious impacts on water resources and hydropower supply in Malawi.}, language = {en} } @article{FernandezPalominoHattermannKrysanovaetal.2020, author = {Fernandez-Palomino, Carlos Antonio and Hattermann, Fred F. and Krysanova, Valentina and Vega-Jacome, Fiorella and Bronstert, Axel}, title = {Towards a more consistent eco-hydrological modelling through multi-objective calibration}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {66}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2020.1846740}, pages = {59 -- 74}, year = {2020}, abstract = {Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography.}, language = {en} } @article{PilzFranckeBaronietal.2020, author = {Pilz, Tobias and Francke, Till and Baroni, Gabriele and Bronstert, Axel}, title = {How to Tailor my process-based hydrological model?}, series = {Water resources research}, volume = {56}, journal = {Water resources research}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2020WR028042}, pages = {24}, year = {2020}, abstract = {In the field of hydrological modeling, many alternative representations of natural processes exist. Choosing specific process formulations when building a hydrological model is therefore associated with a high degree of ambiguity and subjectivity. In addition, the numerical integration of the underlying differential equations and parametrization of model structures influence model performance. Identifiability analysis may provide guidance by constraining the a priori range of alternatives based on observations. In this work, a flexible simulation environment is used to build an ensemble of semidistributed, process-based hydrological model configurations with alternative process representations, numerical integration schemes, and model parametrizations in an integrated manner. The flexible simulation environment is coupled with an approach for dynamic identifiability analysis. The objective is to investigate the applicability of the framework to identify the most adequate model. While an optimal model configuration could not be clearly distinguished, interesting results were obtained when relating model identifiability with hydro-meteorological boundary conditions. For instance, we tested the Penman-Monteith and Shuttleworth \& Wallace evapotranspiration models and found that the former performs better under wet and the latter under dry conditions. Parametrization of model structures plays a dominant role as it can compensate for inadequate process representations and poor numerical solvers. Therefore, it was found that numerical solvers of high order of accuracy do often, though not necessarily, lead to better model performance. The proposed coupled framework proved to be a straightforward diagnostic tool for model building and hypotheses testing and shows potential for more in-depth analysis of process implementations and catchment functioning.}, language = {en} } @misc{PetrowHeistermannBronstert2017, author = {Petrow, Theresia and Heistermann, Maik and Bronstert, Axel}, title = {Analysis of Flash Floods in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, pages = {212 -- 212}, year = {2017}, language = {en} } @article{VormoorHeistermannBronstertetal.2018, author = {Vormoor, Klaus Josef and Heistermann, Maik and Bronstert, Axel and Lawrence, Deborah}, title = {Hydrological model parameter (in)stability}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {63}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {7}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2018.1466056}, pages = {991 -- 1007}, year = {2018}, abstract = {This paper investigates the transferability of calibrated HBV model parameters under stable and contrasting conditions in terms of flood seasonality and flood generating processes (FGP) in five Norwegian catchments with mixed snowmelt/rainfall regimes. We apply a series of generalized (differential) split-sample tests using a 6-year moving window over (i) the entire runoff observation periods, and (ii) two subsets of runoff observations distinguished by the seasonal occurrence of annual maximum floods during either spring or autumn. The results indicate a general model performance loss due to the transfer of calibrated parameters to independent validation periods of -5 to -17\%, on average. However, there is no indication that contrasting flood seasonality exacerbates performance losses, which contradicts the assumption that optimized parameter sets for snowmelt-dominated floods (during spring) perform particularly poorly on validation periods with rainfall-dominated floods (during autumn) and vice versa.}, language = {en} } @article{FranckeFoersterBrosinskyetal.2018, author = {Francke, Till and F{\"o}rster, Saskia and Brosinsky, Arlena and Sommerer, Erik and Lopez-Tarazonl, Jose Andres and G{\"u}ntner, Andreas and Batalla, Ramon J. and Bronstert, Axel}, title = {Water and sediment fluxes in Mediterranean mountainous regions}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1866-3508}, doi = {10.5194/essd-10-1063-2018}, pages = {1063 -- 1075}, year = {2018}, abstract = {A comprehensive hydro-sedimentological dataset for the Isabena catchment, northeastern (NE) Spain, for the period 2010-2018 is presented to analyse water and sediment fluxes in a Mediterranean mesoscale catchment. The dataset includes rainfall data from 12 rain gauges distributed within the study area complemented by meteorological data of 12 official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSCs) at six gauging stations of the River Isabena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isabena catchment (445 km(2)) is located in the southern central Pyrenees ranging from 450 m to 2720 m a.s.l.; together with a pronounced topography, this leads to distinct temperature and precipitation gradients. The River Isabena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. The main sediment source is badland areas located on Eocene marls that are well connected to the river network. The dataset features a comprehensive set of variables in a high spatial and temporal resolution suitable for the advanced process understanding of water and sediment fluxes, their origin and connectivity and sediment budgeting and for the evaluation and further development of hydro-sedimentological models in Mediterranean mesoscale mountainous catchments.}, language = {en} } @article{BronstertAgarwalBoessenkooletal.2018, author = {Bronstert, Axel and Agarwal, Ankit and Boessenkool, Berry and Crisologo, Irene and Fischer, Madlen and Heistermann, Maik and Koehn-Reich, Lisei and Andres Lopez-Tarazon, Jose and Moran, Thomas and Ozturk, Ugur and Reinhardt-Imjela, Christian and Wendi, Dadiyorto}, title = {Forensic hydro-meteorological analysis of an extreme flash flood}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {630}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2018.02.241}, pages = {977 -- 991}, year = {2018}, abstract = {The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100 years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @misc{RottlerBronstertBuergeretal.2021, author = {Rottler, Erwin and Bronstert, Axel and B{\"u}rger, Gerd and Rakovec, Oldrich}, title = {Projected changes in Rhine River flood seasonality under global warming}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-52296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522962}, pages = {21}, year = {2021}, abstract = {Climatic change alters the frequency and intensity of natural hazards. In order to assess potential future changes in flood seasonality in the Rhine River Basin, we analyse changes in streamflow, snowmelt, precipitation, and evapotranspiration at 1.5, 2.0 and 3.0 ◦C global warming levels. The mesoscale Hydrological Model (mHM) forced with an ensemble of climate projection scenarios (five general circulation models under three representative concentration pathways) is used to simulate the present and future climate conditions of both, pluvial and nival hydrological regimes. Our results indicate that the interplay between changes in snowmelt- and rainfall-driven runoff is crucial to understand changes in streamflow maxima in the Rhine River. Climate projections suggest that future changes in flood characteristics in the entire Rhine River are controlled by both, more intense precipitation events and diminishing snow packs. The nature of this interplay defines the type of change in runoff peaks. On the sub-basin level (the Moselle River), more intense rainfall during winter is mostly counterbalanced by reduced snowmelt contribution to the streamflow. In the High Rhine (gauge at Basel), the strongest increases in streamflow maxima show up during winter, when strong increases in liquid precipitation intensity encounter almost unchanged snowmelt-driven runoff. The analysis of snowmelt events suggests that at no point in time during the snowmelt season, a warming climate results in an increase in the risk of snowmelt-driven flooding. We do not find indications of a transient merging of pluvial and nival floods due to climate warming.}, language = {en} } @article{MamedeGuentnerMedeirosetal.2018, author = {Mamede, George Leite and Guentner, Andreas and Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Modeling the Effect of Multiple Reservoirs on Water and Sediment Dynamics in a Semiarid Catchment in Brazil}, series = {Journal of Hydrologic Engineering}, volume = {23}, journal = {Journal of Hydrologic Engineering}, number = {12}, publisher = {American Society of Civil Engineers}, address = {Reston}, issn = {1084-0699}, doi = {10.1061/(ASCE)HE.1943-5584.0001701}, pages = {13}, year = {2018}, abstract = {Taking into account the climatic conditions of the semiarid region of Brazil, with its intermittent rivers and long periods of water scarcity, a dense network of surface reservoirs (on average one dam every 5 km(2)) of very different sizes has been built. The impact of such a network on water and sediment dynamics constitutes a remarkable challenge for hydrologists. The main objective of this work is to present a novel way of simulating water and sediment fluxes through such high-density reservoir networks, which enables the assessment of water and sediment retention in those structures. The new reservoir modeling approach has been coupled with the fully process-oriented and semidistributed hydrological WASA-SED model, which was tailored for semiarid hydroclimatological characteristics. This integrated modeling system was applied to the 933-km(2) Bengue catchment, located in semiarid northeastern Brazil, which has a network of 114 reservoirs with a wide range of surface areas (from 0.003 to 350 ha). The small reservoirs were grouped into size classes according to their storage capacity and a cascade routing scheme was applied to describe the upstream-downstream position of the classes; the large reservoirs were handled explicitly in the reservoir modeling approach. According to the model results, the proposed approach is capable of representing the water and sediment fluxes though the entire reservoir network with reasonable accuracy. In addition, the model shows that the dynamics of water and sediment within the Bengue catchment are strongly impacted by the presence of multiple reservoirs, which are able to retain approximately 21\% of the generated runoff and almost 42\% of the sediment yield of the catchment for the simulation period, from 2000 to 2012. (C) 2018 American Society of Civil Engineers.}, language = {en} } @article{FranckeBaroniBrosinskyetal.2018, author = {Francke, Till and Baroni, Gabriele and Brosinsky, Arlena and Foerster, Saskia and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Sommerer, Erik and Bronstert, Axel}, title = {What Did Really Improve Our Mesoscale Hydrological Model?}, series = {Water resources research}, volume = {54}, journal = {Water resources research}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR022813}, pages = {8594 -- 8612}, year = {2018}, abstract = {Modelers can improve a model by addressing the causes for the model errors (data errors and structural errors). This leads to implementing model enhancements (MEs), for example, meteorological data based on more monitoring stations, improved calibration data, and/or modifications in process formulations. However, deciding on which MEs to implement remains a matter of expert knowledge. After implementing multiple MEs, any improvement in model performance is not easily attributed, especially when considering different objectives or aspects of this improvement (e.g., better dynamics vs. reduced bias). We present an approach for comparing the effect of multiple MEs based on real observations and considering multiple objectives (MMEMO). A stepwise selection approach and structured plots help to address the multidimensionality of the problem. Tailored analyses allow a differentiated view on the effect of MEs and their interactions. MMEMO is applied to a case study employing the mesoscale hydro-sedimentological model WASA-SED for the Mediterranean-mountainous Isabena catchment, northeast Spain. The investigated seven MEs show diverse effects: some MEs (e.g., rainfall data) cause improvements for most objectives, while other MEs (e.g., land use data) only affect a few objectives or even decrease model performance. Interaction of MEs was observed for roughly half of the MEs, confirming the need to address them in the analysis. Calibration and increasing the temporal resolution showed by far stronger impact than any of the other MEs. The proposed framework can be adopted in other studies to analyze the effect of MEs and, thus, facilitate the identification and implementation of the most promising MEs for comparable cases.}, language = {en} } @article{KrolJaegerBronstertetal.2006, author = {Krol, Maarten and Jaeger, Annekathrin and Bronstert, Axel and G{\"u}ntner, Andreas}, title = {Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil}, series = {Journal of hydrology}, volume = {328}, journal = {Journal of hydrology}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2005.12.021}, pages = {417 -- 431}, year = {2006}, abstract = {Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved.}, language = {en} } @article{VormoorRosslerBuergeretal.2017, author = {Vormoor, Klaus Josef and Rossler, Ole and B{\"u}rger, Gerd and Bronstert, Axel and Weingartner, Rolf}, title = {When timing matters-considering changing temporal structures in runoff response surfaces}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {142}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-017-1940-1}, pages = {213 -- 226}, year = {2017}, abstract = {Scenario-neutral response surfaces illustrate the sensitivity of a simulated natural system, represented by a specific impact variable, to systematic perturbations of climatic parameters. This type of approach has recently been developed as an alternative to top-down approaches for the assessment of climate change impacts. A major limitation of this approach is the underrepresentation of changes in the temporal structure of the climate input data (i.e., the seasonal and day-to-day variability) since this is not altered by the perturbation. This paper presents a framework that aims to examine this limitation by perturbing both observed and projected climate data time series for a future period, which both serve as input into a hydrological model (the HBV model). The resulting multiple response surfaces are compared at a common domain, the standardized runoff response surface (SRRS). We apply this approach in a case study catchment in Norway to (i) analyze possible changes in mean and extreme runoff and (ii) quantify the influence of changes in the temporal structure represented by 17 different climate input sets using linear mixed-effect models. Results suggest that climate change induced increases in mean and peak flow runoff and only small changes in low flow. They further suggest that the effect of the different temporal structures of the climate input data considerably affects low flows and floods (at least 21\% influence), while it is negligible for mean runoff.}, language = {en} } @article{PilzFranckeBronstert2017, author = {Pilz, Tobias and Francke, Till and Bronstert, Axel}, title = {lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models}, series = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, volume = {10}, journal = {Geoscientific model development : an interactive open access journal of the European Geosciences Union}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-10-3001-2017}, pages = {3001 -- 3023}, year = {2017}, abstract = {The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.}, language = {en} } @article{HattermannKrysanovaHabecketal.2006, author = {Hattermann, Fred Fokko and Krysanova, Valentina and Habeck, Anja and Bronstert, Axel}, title = {Integrating wetlands and riparian zones in river basin modelling}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {199}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, number = {4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2005.06.012}, pages = {379 -- 392}, year = {2006}, abstract = {Wetlands, and in particular riparian wetlands, represent an interface between the catchment area and the aquatic environment. They control the exchange of water and related chemical fluxes from the upper catchment area to surface waters like streams and lakes. Their influence on water and nutrient balances has been investigated mainly at the patch scale. In this study an attempt was made (a) to integrate riparian zones and wetlands into eco-hydrological river basin modelling, and (b) to quantify the impacts of riparian wetland processes on water and nutrient fluxes in a meso-scale catchment located in the northeastern German lowland. The investigation was performed by analysing hydro-chemical field data and applying the eco-hydrological model SWIM (Soil and Water Integrated Model), which was extended to reproduce the relevant water and nutrient flows and retention processes at the catchment scale in general, and in riparian zones and wetlands in particular. The main extensions introduced in the model were: (1) implementation of daily groundwater table dynamics at the hydrotope level, (2) implementation of water and nutrient uptake by plants from groundwater in riparian zones and wetlands, and (3) assessment of nutrient retention in groundwater and interflow. The simulation results indicate that wetlands, though they represent relatively small parts of the total catchment area, may have a significant impact on the overall water and nutrient balances of the catchment. The uncertainty of the simulation results is considerably high, with the main sources of uncertainty being the model parameters representing the geo-hydrology and the input data for land use management. (c) 2006 Elsevier B.V. All rights reserved.}, language = {en} } @article{AbonKneisCrisologoetal.2016, author = {Abon, Catherine Cristobal and Kneis, David and Crisologo, Irene and Bronstert, Axel and David, Carlos Primo Constantino and Heistermann, Maik}, title = {Evaluating the potential of radar-based rainfall estimates for streamflow and flood simulations in the Philippines}, series = {GEOMATICS NATURAL HAZARDS \& RISK}, volume = {7}, journal = {GEOMATICS NATURAL HAZARDS \& RISK}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1947-5705}, doi = {10.1080/19475705.2015.1058862}, pages = {1390 -- 1405}, year = {2016}, abstract = {This case study evaluates the suitability of radar-based quantitative precipitation estimates (QPEs) for the simulation of streamflow in the Marikina River Basin (MRB), the Philippines. Hourly radar-based QPEs were produced from reflectivity that had been observed by an S-band radar located about 90 km from the MRB. Radar data processing and precipitation estimation were carried out using the open source library wradlib. To assess the added value of the radar-based QPE, we used spatially interpolated rain gauge observations (gauge-only (GO) product) as a benchmark. Rain gauge observations were also used to quantify rainfall estimation errors at the point scale. At the point scale, the radar-based QPE outperformed the GO product in 2012, while for 2013, the performance was similar. For both periods, estimation errors substantially increased from daily to the hourly accumulation intervals. Despite this fact, both rainfall estimation methods allowed for a good representation of observed streamflow when used to force a hydrological simulation model of the MRB. Furthermore, the results of the hydrological simulation were consistent with rainfall verification at the point scale: the radar-based QPE performed better than the GO product in 2012, and equivalently in 2013. Altogether, we could demonstrate that, in terms of streamflow simulation, the radar-based QPE can perform as good as or even better than the GO product - even for a basin such as the MRB which has a comparatively dense rain gauge network. This suggests good prospects for using radar-based QPE to simulate and forecast streamflow in other parts of the Philippines where rain gauge networks are not as dense.}, language = {en} } @misc{KneisAbonBronstertetal.2016, author = {Kneis, David and Abon, Catherine Cristobal and Bronstert, Axel and Heistermann, Maik}, title = {Verification of short-term runoff forecasts for a small Philippine basin (Marikina)}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {62}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0262-6667}, doi = {10.1080/02626667.2016.1183773}, pages = {205 -- 216}, year = {2016}, abstract = {Storm runoff from the Marikina River Basin frequently causes flood events in the Philippine capital region Metro Manila. This paper presents and evaluates a system to predict short-term runoff from the upper part of that basin (380km(2)). It was designed as a possible component of an operational warning system yet to be installed. For the purpose of forecast verification, hindcasts of streamflow were generated for a period of 15 months with a time-continuous, conceptual hydrological model. The latter was fed with real-time observations of rainfall. Both ground observations and weather radar data were tested as rainfall forcings. The radar-based precipitation estimates clearly outperformed the raingauge-based estimates in the hydrological verification. Nevertheless, the quality of the deterministic short-term runoff forecasts was found to be limited. For the radar-based predictions, the reduction of variance for lead times of 1, 2 and 3hours was 0.61, 0.62 and 0.54, respectively, with reference to a no-forecast scenario, i.e. persistence. The probability of detection for major increases in streamflow was typically less than 0.5. Given the significance of flood events in the Marikina Basin, more effort needs to be put into the reduction of forecast errors and the quantification of remaining uncertainties.}, language = {en} } @article{deAraujoBronstert2016, author = {de Araujo, Jose Carlos and Bronstert, Axel}, title = {A method to assess hydrological drought in semi-arid environments and its application to the Jaguaribe River basin, Brazil}, series = {Water International}, volume = {41}, journal = {Water International}, publisher = {Wiley-Blackwell}, address = {Abingdon}, issn = {0250-8060}, doi = {10.1080/02508060.2015.1113077}, pages = {213 -- 230}, year = {2016}, abstract = {This manuscript proposes a method to assess hydrological drought in semi-arid environments under high impoundment rate and applies it to the semi-arid Jaguaribe River basin in Brazil. It analyzes droughts (1) in the largest reservoir systems; (2) in the Upper Basin, considering 4744 reservoirs, 800 wells and almost 18,000 cisterns; and (3) in reservoirs of different sizes during multiyear droughts. Results show that the water demand is constrained in the basin; hydrological and meteorological droughts are often out of phase; there is a negative correlation between storage level and drought severity; and the small systems cannot cope with long-term droughts.}, language = {en} } @article{MiegelGraeffSelleetal.2016, author = {Miegel, Konrad and Graeff, Thomas and Selle, Benny and Salzmann, Thomas and Franck, Christian and Bronstert, Axel}, title = {Investigation of a renatured fen on the Baltic Sea coast of Mecklenburg - Part I: System description and basic hydrological characterisation}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {60}, journal = {Hydrologie und Wasserbewirtschaftung}, publisher = {Bundesanst. f{\~A}¼r Gew{\~A}\isserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2016.4_1}, pages = {242 -- 258}, year = {2016}, language = {de} } @article{PilzDelgadoVossetal.2019, author = {Pilz, Tobias and Delgado, Jos{\´e} Miguel Martins and Voss, Sebastian and Vormoor, Klaus Josef and Francke, Till and Cunha Costa, Alexandre and Martins, Eduardo and Bronstert, Axel}, title = {Seasonal drought prediction for semiarid northeast Brazil}, series = {Hydrology and Earth System Sciences}, volume = {23}, journal = {Hydrology and Earth System Sciences}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-23-1951-2019}, pages = {1951 -- 1971}, year = {2019}, abstract = {The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models.}, language = {en} } @misc{PilzDelgadoVossetal.2019, author = {Pilz, Tobias and Delgado, Jos{\´e} Miguel Martins and Voss, Sebastian and Vormoor, Klaus Josef and Francke, Till and Cunha Costa, Alexandre and Martins, Eduardo and Bronstert, Axel}, title = {Seasonal drought prediction for semiarid northeast Brazil}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {702}, issn = {1866-8372}, doi = {10.25932/publishup-42795}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427950}, pages = {21}, year = {2019}, abstract = {The semiarid northeast of Brazil is one of the most densely populated dryland regions in the world and recurrently affected by severe droughts. Thus, reliable seasonal forecasts of streamflow and reservoir storage are of high value for water managers. Such forecasts can be generated by applying either hydrological models representing underlying processes or statistical relationships exploiting correlations among meteorological and hydrological variables. This work evaluates and compares the performances of seasonal reservoir storage forecasts derived by a process-based hydrological model and a statistical approach. Driven by observations, both models achieve similar simulation accuracies. In a hindcast experiment, however, the accuracy of estimating regional reservoir storages was considerably lower using the process-based hydrological model, whereas the resolution and reliability of drought event predictions were similar by both approaches. Further investigations regarding the deficiencies of the process-based model revealed a significant influence of antecedent wetness conditions and a higher sensitivity of model prediction performance to rainfall forecast quality. Within the scope of this study, the statistical model proved to be the more straightforward approach for predictions of reservoir level and drought events at regionally and monthly aggregated scales. However, for forecasts at finer scales of space and time or for the investigation of underlying processes, the costly initialisation and application of a process-based model can be worthwhile. Furthermore, the application of innovative data products, such as remote sensing data, and operational model correction methods, like data assimilation, may allow for an enhanced exploitation of the advanced capabilities of process-based hydrological models.}, language = {en} } @article{BronstertLange, author = {Bronstert, Axel and Lange, Jens}, title = {Hydrologie von Trockenregionen}, series = {Hydrologie}, journal = {Hydrologie}, publisher = {Haupt Verlag}, address = {Bern}, isbn = {978-3-8252-4513-9}, pages = {299 -- 312}, language = {de} } @article{Bronstert, author = {Bronstert, Axel}, title = {Abflussbildung in der Landschaft}, series = {Hydrologie}, journal = {Hydrologie}, publisher = {Haupt Verlag}, address = {Bern}, isbn = {978-3-8252-4513-9}, pages = {143 -- 166}, language = {de} } @misc{PilzFranckeBronstert2017, author = {Pilz, Tobias and Francke, Till and Bronstert, Axel}, title = {lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402880}, pages = {23}, year = {2017}, abstract = {The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.}, language = {en} } @article{PilzFranckeBronstert2017, author = {Pilz, Tobias and Francke, Till and Bronstert, Axel}, title = {lumpR 2.0.0: an R package facilitating landscape discretisation for hillslope-based hydrological models}, series = {Geoscientific model development}, volume = {10}, journal = {Geoscientific model development}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1991-959X}, doi = {10.5194/gmd-10-3001-2017}, pages = {3001 -- 3023}, year = {2017}, abstract = {The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.}, language = {en} } @techreport{AgarwalBoessenkoolFischeretal.2016, author = {Agarwal, Ankit and Boessenkool, Berry and Fischer, Madlen and Hahn, Irene and K{\"o}hn, Lisei and Laudan, Jonas and Moran, Thomas and {\"O}zt{\"u}rk, Ugur and Riemer, Adrian and R{\"o}zer, Viktor and Sieg, Tobias and Vogel, Kristin and Wendi, Dadiyorto and Bronstert, Axel and Thieken, Annegret}, title = {Die Sturzflut in Braunsbach, Mai 2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394881}, pages = {20}, year = {2016}, abstract = {Im Graduiertenkolleg NatRiskChange der Universit{\"a}t Potsdam und anderen Forschungseinrichtungen werden beobachtete sowie zuk{\"u}nftig m{\"o}gliche Ver{\"a}nderungen von Naturgefahren untersucht. Teil des strukturierten Doktorandenprogramms sind sogenannte Task-Force-Eins{\"a}tze, bei denen die Promovierende zeitlich begrenzt ein aktuelles Ereignis auswerten. Im Zuge dieser Aktivit{\"a}t wurde die Sturzflut vom 29.05.2016 in Braunsbach (Baden-W{\"u}rttemberg) untersucht. In diesem Bericht werden erste Auswertungen zur Einordnung der Niederschl{\"a}ge, zu den hydrologischen und geomorphologischen Prozessen im Einzugsgebiet des Orlacher Bachs sowie zu den verursachten Sch{\"a}den beleuchtet. Die Region war Zentrum extremer Regenf{\"a}lle in der Gr{\"o}ßenordnung von 100 mm innerhalb von 2 Stunden. Das 6 km² kleine Einzugsgebiet hat eine sehr schnelle Reaktionszeit, zumal bei vorges{\"a}ttigtem Boden. Im steilen Bachtal haben mehrere kleinere und gr{\"o}ßere Hangrutschungen {\"u}ber 8000 m³ Ger{\"o}ll, Schutt und Schwemmholz in das Gew{\"a}sser eingetragen und m{\"o}glicherweise kurzzeitige Aufstauungen und Durchbr{\"u}che verursacht. Neben den großen Wassermengen mit einer Abflussspitze in einer Gr{\"o}ßenordnung von 100 m³/s hat gerade die Geschiebefracht zu großen Sch{\"a}den an den Geb{\"a}uden entlang des Bachlaufs in Braunsbach gef{\"u}hrt.}, language = {de} } @misc{KormannBronstertFranckeetal.2017, author = {Kormann, Christoph and Bronstert, Axel and Francke, Till and Recknagel, Thomas and Gr{\"a}ff, Thomas}, title = {Model-Based attribution of high-resolution streamflow trends in two alpine basins of Western Austria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400641}, pages = {21}, year = {2017}, abstract = {Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment) with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower altitudes during the study period.}, language = {en} } @inproceedings{LopezTarazonBronstertThiekenetal.2017, author = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, title = {International symposium on the effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers}, series = {Book of Abstracts}, booktitle = {Book of Abstracts}, editor = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, organization = {Universit{\"a}t Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396922}, pages = {104}, year = {2017}, abstract = {Both Alpine and Mediterranean areas are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods which are likely to lead to huge geomorphic adjustments of river channels so major metamorphosis of fluvial systems is expected as a result of global change. Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazards from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes the climatological and physical conditions that could influence the hydrology and sediment generation and hence the conveyance of water and sediments (including the river's capacity, i.e. amount of sediment, and competence, i.e. channel deformation) and the vulnerabilities and economic repercussions of changing hydrological hazards (including the evaluation of the hydro-geomorphological risks too). Within this framework, the purpose of this international symposium is to bring together researchers from several disciplines as hydrology, fluvial geomorphology, hydraulic engineering, environmental science, geography, economy (and any other related discipline) to discuss the effects of global change over the river system in relation with floods. The symposium is organized by means of invited talks given by prominent experts, oral lectures, poster sessions and discussion sessions for each individual topic; it will try to improve our understanding of how rivers are likely to evolve as a result of global change and hence address the associated hazards of that fluvial environmental change concerning flooding. Four main topics are going to be addressed: - Modelling global change (i.e. climate and land-use) at relevant spatial (regional, local) and temporal (from the long-term to the single-event) scales. - Measuring and modelling river floods from the hydrological, sediment transport (both suspended and bedload) and channel morphology points of view at different spatial (from the catchment to the reach) and temporal (from the long-term to the single-event) scales. - Evaluation and assessment of current and future river flooding hazards and risks in a global change perspective. - Catchment management to face river floods in a changing world. We are very pleased to welcome you to Potsdam. We hope you will enjoy your participation at the International Symposium on the Effects of Global Change on Floods, Fluvial Geomorphology and Related Hazards in Mountainous Rivers and have an exciting and profitable experience. Finally, we would like to thank all speakers, participants, supporters, and sponsors for their contributions that for sure will make of this event a very remarkable and fruitful meeting. We acknowledge the valuable support of the European Commission (Marie Curie Intra-European Fellowship, Project ''Floodhazards'', PIEF-GA-2013-622468, Seventh EU Framework Programme) and the Deutschen Forschungsgemeinschaft (Research Training Group "Natural Hazards and Risks in a Changing World" (NatRiskChange; GRK 2043/1) as the symposium would not have been possible without their help. Without your cooperation, this symposium would not be either possible or successful.}, language = {en} } @misc{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394956}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @article{DidovetsLobanovaBronstertetal.2017, author = {Didovets, Iulii and Lobanova, Anastasia and Bronstert, Axel and Snizhko, Sergiy and Maule, Cathrine Fox and Krysanova, Valentina}, title = {Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling}, series = {Water}, volume = {9}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w9030204}, pages = {18}, year = {2017}, abstract = {The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, UpperWestern Bug, and Samara) characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM)—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model) coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways) 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.}, language = {en} } @article{KormannFranckeBronstert2015, author = {Kormann, Christoph and Francke, Till and Bronstert, Axel}, title = {Detection of regional climate change effects on alpine hydrology by daily resolution trend analysis in Tyrol, Austria}, series = {Journal of water and climate change}, volume = {6}, journal = {Journal of water and climate change}, number = {1}, publisher = {IWA Publ.}, address = {London}, issn = {2040-2244}, doi = {10.2166/wcc.2014.099}, pages = {124 -- 143}, year = {2015}, abstract = {Owing to average temperature increases of at least twice the global mean, climate change is expected to have strong impacts on local hydrology and climatology in the Alps. Nevertheless, trend analyses of hydro-climatic station data rarely reveal clear patterns concerning climate change signals except in temperature observations. However, trend research has thus far mostly been based on analysing trends of averaged data such as yearly, seasonal or monthly averages and has therefore often not been able to detect the finer temporal dynamics. For this reason, we derived 30-day moving average trends, providing a daily resolution of the timing and magnitude of trends within the seasons. Results are validated by including different time periods. We studied daily observations of mean temperature, liquid and solid precipitation, snow height and runoff in the relatively dry central Alpine region in Tyrol, Austria. Our results indicate that the vast majority of changes are observed throughout spring to early summer, most likely triggered by the strong temperature increase during this season. Temperature, streamflow and snow trends have clearly amplified during recent decades. The overall results are consistent over the entire investigation area and different time periods.}, language = {en} } @article{KormannFranckeRenneretal.2015, author = {Kormann, Christoph and Francke, Till and Renner, M. and Bronstert, Axel}, title = {Attribution of high resolution streamflow trends in Western Austria - an approach based on climate and discharge station data}, series = {Hydrology and earth system sciences : HESS}, volume = {19}, journal = {Hydrology and earth system sciences : HESS}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-19-1225-2015}, pages = {1225 -- 1245}, year = {2015}, abstract = {The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At mid-altitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime.}, language = {en} } @article{MohrMangaWangetal.2015, author = {Mohr, Christian Heinrich and Manga, Michael and Wang, Chi-yuen and Kirchner, James W. and Bronstert, Axel}, title = {Shaking water out of soil}, series = {Geology}, volume = {43}, journal = {Geology}, number = {3}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G36261.1}, pages = {207 -- 210}, year = {2015}, abstract = {Moderate to large earthquakes can increase the amount of water flowing in streams. Previous interpretations and models assume that the extra water originates in the saturated zone. Here we show that earthquakes may also release water from the unsaturated zone when the seismic energy is sufficient to overcome the threshold of soil water retention. Soil water may then be released into aquifers, increasing streamflow. After the M8.8 Maule, Chile, earthquake, the discharge in some headwater catchments of the Chilean coastal range increased, and the amount of extra water in the discharge was similar to the total amount of water available for release from the unsaturated zone. Assuming rapid recharge of this water to the water table, a groundwater flow model that accounts for evapotranspiration and water released from soils can reproduce the increase in discharge as well as the enhanced diurnal discharge variations observed after the earthquake. Thus the unsaturated zone may play a previously unappreciated, and potentially significant, role in shallow hydrological responses to earthquakes.}, language = {en} } @article{MohrZimmermannKorupetal.2014, author = {Mohr, Christian Heinrich and Zimmermann, Andreas and Korup, Oliver and Iroume, A. and Francke, Till and Bronstert, Axel}, title = {Seasonal logging, process response, and geomorphic work}, series = {Earth surface dynamics}, volume = {2}, journal = {Earth surface dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2196-6311}, doi = {10.5194/esurf-2-117-2014}, pages = {117 -- 125}, year = {2014}, abstract = {Deforestation is a prominent anthropogenic cause of erosive overland flow and slope instability, boosting rates of soil erosion and concomitant sediment flux. Conventional methods of gauging or estimating post-logging sediment flux often focus on annual timescales but overlook potentially important process response on shorter intervals immediately following timber harvest. We resolve such dynamics with non-parametric quantile regression forests (QRF) based on high-frequency (3 min) discharge measurements and sediment concentration data sampled every 30-60 min in similar-sized (similar to 0.1 km(2)) forested Chilean catchments that were logged during either the rainy or the dry season. The method of QRF builds on the random forest algorithm, and combines quantile regression with repeated random sub-sampling of both cases and predictors. The algorithm belongs to the family of decision-tree classifiers, which allow quantifying relevant predictors in high-dimensional parameter space. We find that, where no logging occurred, similar to 80\% of the total sediment load was transported during extremely variable runoff events during only 5\% of the monitoring period. In particular, dry-season logging dampened the relative role of these rare, extreme sediment-transport events by increasing load efficiency during more efficient moderate events. We show that QRFs outperform traditional sediment rating curves (SRCs) in terms of accurately simulating short-term dynamics of sediment flux, and conclude that QRF may reliably support forest management recommendations by providing robust simulations of post-logging response of water and sediment fluxes at high temporal resolution.}, language = {en} } @article{BuergerHeistermannBronstert2014, author = {B{\"u}rger, Gerd and Heistermann, Maik and Bronstert, Axel}, title = {Towards subdaily rainfall disaggregation via Clausius-Clapeyron}, series = {Journal of hydrometeorology}, volume = {15}, journal = {Journal of hydrometeorology}, number = {3}, publisher = {American Meteorological Soc.}, address = {Boston}, issn = {1525-755X}, doi = {10.1175/JHM-D-13-0161.1}, pages = {1303 -- 1311}, year = {2014}, abstract = {Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius-Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications.}, language = {en} } @article{HeistermannFranckeGeorgietal.2014, author = {Heistermann, Maik and Francke, Till and Georgi, Christof and Bronstert, Axel}, title = {Increasing life expectancy of water resources literature}, series = {Water resources research}, volume = {50}, journal = {Water resources research}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1002/2014WR015674}, pages = {5019 -- 5028}, year = {2014}, abstract = {In a study from 2008, Lariviere and colleagues showed, for the field of natural sciences and engineering, that the median age of cited references is increasing over time. This result was considered counterintuitive: with the advent of electronic search engines, online journal issues and open access publications, one could have expected that cited literature is becoming younger. That study has motivated us to take a closer look at the changes in the age distribution of references that have been cited in water resources journals since 1965. Not only could we confirm the findings of Lariviere and colleagues. We were also able to show that the aging is mainly happening in the oldest 10-25\% of an average reference list. This is consistent with our analysis of top-cited papers in the field of water resources. Rankings based on total citations since 1965 consistently show the dominance of old literature, including text books and research papers in equal shares. For most top-cited old-timers, citations are still growing exponentially. There is strong evidence that most citations are attracted by publications that introduced methods which meanwhile belong to the standard toolset of researchers and practitioners in the field of water resources. Although we think that this trend should not be overinterpreted as a sign of stagnancy, there might be cause for concern regarding how authors select their references. We question the increasing citation of textbook knowledge as it holds the risk that reference lists become overcrowded, and that the readability of papers deteriorates.}, language = {en} } @article{MuellervanSchaikBlumeetal.2014, author = {M{\"u}ller, Eva Nora and van Schaik, Loes and Blume, Theresa and Bronstert, Axel and Carus, Jana and Fleckenstein, Jan H. and Fohrer, Nicola and Geissler, Katja and Gerke, Horst H. and Gr{\"a}ff, Thomas and Hesse, Cornelia and Hildebrandt, Anke and H{\"o}lker, Franz and Hunke, Philip and K{\"o}rner, Katrin and Lewandowski, J{\"o}rg and Lohmann, Dirk and Meinikmann, Karin and Schibalski, Anett and Schmalz, Britta and Schr{\"o}der-Esselbach, Boris and Tietjen, Britta}, title = {Scales, key aspects, feedbacks and challenges of ecohydrological research in Germany}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {58}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {4}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2014,4_2}, pages = {221 -- 240}, year = {2014}, abstract = {Ecohydrology analyses the interactions of biotic and abiotic aspects of our ecosystems and landscapes. It is a highly diverse discipline in terms of its thematic and methodical research foci. This article gives an overview of current German ecohydrological research approaches within plant-animal-soil-systems, meso-scale catchments and their river networks, lake systems, coastal areas and tidal rivers. It discusses their relevant spatial and temporal process scales and different types of interactions and feedback dynamics between hydrological and biotic processes and patterns. The following topics are considered key challenges: innovative analysis of the interdisciplinary scale continuum, development of dynamically coupled model systems, integrated monitoring of coupled processes at the interface and transition from basic to applied ecohydrological science to develop sustainable water and land resource management strategies under regional and global change.}, language = {de} } @article{HeineFranckeRogassetal.2014, author = {Heine, Iris and Francke, Till and Rogass, Christian and Medeiros, Pedro Henrique Augusto and Bronstert, Axel and F{\"o}rster, Saskia}, title = {Monitoring seasonal changes in the water surface areas of reservoirs using TerraSAR-X time series data in semiarid northeastern Brazil}, series = {IEEE journal of selected topics in applied earth observations and remote sensing}, volume = {7}, journal = {IEEE journal of selected topics in applied earth observations and remote sensing}, number = {8}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1939-1404}, doi = {10.1109/JSTARS.2014.2323819}, pages = {3190 -- 3199}, year = {2014}, abstract = {The 933 km(2) Bengue catchment in northeastern Brazil is characterized by distinct rainy and dry seasons. Precipitation is stored in variously sized reservoirs, which is essential for the local population. In this study, we used TerraSAR-X SM(HH) data for an one-year monitoring of seasonal changes in the reservoir areas from July 2011 to July 2012. The monitoring was based on acquisitions in the ascending pass direction, complemented by occasional descending-pass images. To detect water surface areas, a histogram analysis followed by a global threshold classification was performed, and the results were validated using in situ GPS data. Distinguishing between small reservoirs and similar looking dark areas was difficult. Therefore, we tested several approaches for identifying misclassified areas. An analysis of the surface area dynamics of the reservoirs indicated high spatial and temporal heterogeneities and a large decrease in the total water surface area of the reservoirs in the catchment by approximately 30\% within one year.}, language = {en} } @article{vanSchaikBronstertdeJongetal.2014, author = {van Schaik, N. Loes M. B. and Bronstert, Axel and de Jong, S. M. and Jetten, V. G. and van Dam, J. C. and Ritsema, C. J. and Schnabel, Susanne}, title = {Process-based modelling of a headwater catchment in a semi-arid area: the influence of macropore flow}, series = {Hydrological processes}, volume = {28}, journal = {Hydrological processes}, number = {24}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0885-6087}, doi = {10.1002/hyp.10086}, pages = {5805 -- 5816}, year = {2014}, abstract = {Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological models neglect this important subsurface preferential flow. Here, we use the process-oriented hydrological model Hillflow-3D, which includes a macropore flow approach, to simulate rainfall-runoff in the semi-arid Parapunos catchment in Spain, where macropore flow was observed in previous research. The model was extended for this study to account for sorptivity under very dry soil conditions. The results of the model simulations with and without macropore flow are compared. Both model versions give reasonable results for average rainfall situations, although the approach with the macropore concept provides slightly better results. The model results for scenarios of extreme rainfall events (>13.3mm30min(-1)) however show large differences between the versions with and without macropores. These model results compared with measured rainfall-runoff data show that the model with the macropore concept is better. Our conclusion is that preferential flow is important in controlling surface runoff in case of specific, high intensity rainfall events. Therefore, preferential flow processes must be included in hydrological models where we know that preferential flow occurs. Hydrological process models with a less detailed process description may fit observed average events reasonably well but can result in erroneous predictions for more extreme events. Copyright (c) 2013 John Wiley \& Sons, Ltd.}, language = {en} } @article{BronstertdeAraujoBatallaVillanuevaetal.2014, author = {Bronstert, Axel and de Araujo, Jose-Carlos and Batalla Villanueva, Ramon J. and Costa, Alexandre Cunha and Delgado, Jos{\´e} Miguel Martins and Francke, Till and F{\"o}rster, Saskia and Guentner, Andreas and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Mamede, George Leite and Medeiros, Pedro Henrique Augusto and Mueller, Eva and Vericat, Damia}, title = {Process-based modelling of erosion, sediment transport and reservoir siltation in mesoscale semi-arid catchments}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0994-1}, pages = {2001 -- 2018}, year = {2014}, abstract = {To support scientifically sound water management in dryland environments a modelling system has been developed for the quantitative assessment of water and sediment fluxes in catchments, transport in the river system, and retention in reservoirs. The spatial scale of interest is the mesoscale because this is the scale most relevant for management of water and land resources. This modelling system comprises process-oriented hydrological components tailored for dryland characteristics coupled with components comprising hillslope erosion, sediment transport and reservoir deposition processes. The spatial discretization is hierarchically designed according to a multi-scale concept to account for particular relevant process scales. The non-linear and partly intermittent run-off generation and sediment dynamics are dealt with by accounting for connectivity phenomena at the intersections of landscape compartments. The modelling system has been developed by means of data from nested research catchments in NE-Spain and in NE-Brazil. In the semi-arid NE of Brazil sediment retention along the topography is the main process for sediment retention at all scales, i.e. the sediment delivery is transport limited. This kind of deposition retains roughly 50 to 60 \% of eroded sediment, maintaining a similar deposition proportion in all spatial scales investigated. On the other hand, the sediment retained in reservoirs is clearly related to the scale, increasing with catchment area. With increasing area, there are more reservoirs, increasing the possibility of deposition. Furthermore, the area increase also promotes an increase in flow volume, favouring the construction of larger reservoirs, which generally overflow less frequently and retain higher sediment fractions. The second example comprises a highly dynamic Mediterranean catchment in NE-Spain with nested sub-catchments and reveals the full dynamics of hydrological, erosion and deposition features. The run-off modelling performed well with only some overestimation during low-flow periods due to the neglect of water losses along the river. The simulated peaks in sediment flux are reproduced well, while low-flow sediment transport is less well captured, due to the disregard of sediment remobilization in the riverbed during low flow. This combined observation and modelling study deepened the understanding of hydro-sedimentological systems characterized by flashy run-off generation and by erosion and sediment transport pulses through the different landscape compartments. The connectivity between the different landscape compartments plays a very relevant role, regarding both the total mass of water and sediment transport and the transport time through the catchment.}, language = {en} } @article{BrosinskyFoersterSegletal.2014, author = {Brosinsky, Arlena and F{\"o}rster, Saskia and Segl, Karl and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Pique, Gemma and Bronstert, Axel}, title = {Spectral fingerprinting: characterizing suspended sediment sources by the use of VNIR-SWIR spectral information}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0927-z}, pages = {1965 -- 1981}, year = {2014}, abstract = {Knowledge of sediment sources is a prerequisite for sustainable management practices and may furthermore improve our understanding of water and sediment fluxes. Investigations have shown that a number of characteristic soil properties can be used as "fingerprints" to trace back the sources of river sediments. Spectral properties have recently been successfully used as such characteristics in fingerprinting studies. Despite being less labour-intensive than geochemical analyses, for example, spectroscopy allows measurements of small amounts of sediment material (> 60 mg), thus enabling inexpensive analyses even of intra-event variability. The focus of this study is on the examination of spectral properties of fluvial sediment samples to detect changes in source contributions, both between and within individual flood events. Sediment samples from the following three different origins were collected in the Isabena catchment (445 km(2)) in the central Spanish Pyrenees: (1) soil samples from the main potential source areas, (2) stored fine sediment from the channel bed once each season in 2011 and (3) suspended sediment samples during four flood events in autumn 2011 and spring 2012 at the catchment outlet as well as at several subcatchment outlets. All samples were dried and measured for spectral properties in the laboratory using an ASD spectroradiometer. Colour parameters and physically based features (e.g. organic carbon, iron oxide and clay content) were calculated from the spectra. Principal component analyses (PCA) were applied to all three types of samples to determine natural clustering of samples, and a mixing model was applied to determine source contributions. We found that fine sediment stored in the river bed seems to be mainly influenced by grain size and seasonal variability, while sampling location-and thus the effect of individual tributaries or subcatchments-seem to be of minor importance. Suspended sediment sources were found to vary between, as well as within, flood events; although badlands were always the major source. Forests and grasslands contributed little (< 10 \%), and other sources (not further determinable) contributed up to 40 \%. The analyses further suggested that sediment sources differ among the subcatchments and that subcatchments comprising relatively large proportions of badlands contributed most to the four flood events analyzed. Spectral fingerprints provide a rapid and cost-efficient alternative to conventional fingerprint properties. However, a combination of spectral and conventional fingerprint properties could potentially permit discrimination of a larger number of source types.}, language = {en} } @article{MedeirosdeAraujoMamedeetal.2014, author = {Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Mamede, George Leite and Creutzfeldt, Benjamin and Guentner, Andreas and Bronstert, Axel}, title = {Connectivity of sediment transport in a semiarid environment: a synthesis for the Upper Jaguaribe Basin, Brazil}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-0988-z}, pages = {1938 -- 1948}, year = {2014}, abstract = {Hydrosedimentological studies conducted in the semiarid Upper Jaguaribe Basin, Brazil, enabled the identification of the key processes controlling sediment connectivity at different spatial scales (10(0)-10(4) km(2)). Water and sediment fluxes were assessed from discharge, sediment concentrations and reservoir siltation measurements. Additionally, mathematical modelling (WASA-SED model) was used to quantify water and sediment transfer within the watershed. Rainfall erosivity in the study area was moderate (4600 MJ mm ha(-1) h(-1) year(-1)), whereas runoff depths (16-60 mm year(-1)), and therefore the sediment transport capacity, were low. Consequently, similar to 60 \% of the eroded sediment was deposited along the landscape, regardless of the spatial scale. The existing high-density reservoir network (contributing area of 6 km(2) per reservoir) also limits sediment propagation, retaining up to 47 \% of the sediment at the large basin scale. The sediment delivery ratio (SDR) decreased with the spatial scale; on average, 41 \% of the eroded sediment was yielded from the hillslopes, while for the whole 24,600-km(2) basin, the SDR was reduced to 1 \% downstream of a large reservoir (1940-hm(3) capacity). Hydrological behaviour in the Upper Jaguaribe Basin represents a constraint on sediment propagation; low runoff depth is the main feature breaking sediment connectivity, which limits sediment transference from the hillslopes to the drainage system. Surface reservoirs are also important barriers, but their relative importance to sediment retention increases with scale, since larger contributing areas are more suitable for the construction of dams due to higher hydrological potential.}, language = {en} } @unpublished{deAraujoBatallaVillanuevaBronstert2014, author = {de Araujo, Jose Carlos and Batalla Villanueva, Ramon J. and Bronstert, Axel}, title = {Special issue: analysis and modelling of sediment transfer in Mediterranean river basins}, series = {Journal of soils and sediments : protection, risk assessment and remediation}, volume = {14}, journal = {Journal of soils and sediments : protection, risk assessment and remediation}, number = {12}, publisher = {Springer}, address = {Heidelberg}, issn = {1439-0108}, doi = {10.1007/s11368-014-1000-7}, pages = {1905 -- 1908}, year = {2014}, language = {en} } @article{IroumeCareyBronstertetal.2011, author = {Iroume, Andres and Carey, Patricio and Bronstert, Axel and Huber, Anton and Palacios, Hardin}, title = {GIS application of USLE and MUSLE to estimate erosion and suspended sediment load in experimental catchments, Valdivia, Chile}, series = {Revista t{\´e}cnica de la Facultad de Ingenieria}, volume = {34}, journal = {Revista t{\´e}cnica de la Facultad de Ingenieria}, number = {2}, publisher = {Facultad de Ingenieria Universidad del Zulia}, address = {Maracaibo}, issn = {0254-0770}, pages = {119 -- 128}, year = {2011}, abstract = {This paper presents the results of a research aimed to quantify suspended sediment transport in three experimental catchments in southern Chile, to compare measured suspended sediment load with estimated erosion using the Universal Soil Loss Equation (USLE) applied in a GIS environment and to validate de Modified Universal Soil Loss Equation (MUSLE) used to estimate suspended sediment loads from forest catchments. The catchments are Los Pinos (94.2 ha), Los Ulmos 1 (12.6 ha) and Los Ulmos 2 (17.7 ha). Soil losses estimated with USLE for the three catchments are higher than those measured in runoff experimental lots under bare soil conditions, which could indicate an overestimation of the LS calculated in GIS and the fact that the USLE model does not compute sediment deposit and storage within the catchment. A statistical significant relation was found between measured and estimated (MUSLE) suspended sediment load, which would indicate that this model could be applied to estimate suspended sediment load from small catchments in southern Chile.}, language = {es} } @article{CostaBronstertKneis2012, author = {Costa, Alexandre Cunha and Bronstert, Axel and Kneis, David}, title = {Probabilistic flood forecasting for a mountainous headwater catchment using a nonparametric stochastic dynamic approach}, series = {Hydrological sciences journal = Journal des sciences hydrologiques}, volume = {57}, journal = {Hydrological sciences journal = Journal des sciences hydrologiques}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {0262-6667}, doi = {10.1080/02626667.2011.637043}, pages = {10 -- 25}, year = {2012}, abstract = {Hydrological models are commonly used to perform real-time runoff forecasting for flood warning. Their application requires catchment characteristics and precipitation series that are not always available. An alternative approach is nonparametric modelling based only on runoff series. However, the following questions arise: Can nonparametric models show reliable forecasting? Can they perform as reliably as hydrological models? We performed probabilistic forecasting one, two and three hours ahead for a runoff series, with the aim of ascribing a probability density function to predicted discharge using time series analysis based on stochastic dynamics theory. The derived dynamic terms were compared to a hydrological model, LARSIM. Our procedure was able to forecast within 95\% confidence interval 1-, 2- and 3-h ahead discharge probability functions with about 1.40 m(3)/s of range and relative errors (\%) in the range [-30; 30]. The LARSIM model and the best nonparametric approaches gave similar results, but the range of relative errors was larger for the nonparametric approaches.}, language = {en} } @article{SalazarFrancesKommaetal.2012, author = {Salazar, S. and Frances, F. and Komma, J. and Blume, Theresa and Francke, Till and Bronstert, Axel and Bl{\"o}schl, G{\"u}nter}, title = {A comparative analysis of the effectiveness of flood management measures based on the concept of "retaining water in the landscape" in different European hydro-climatic regions}, series = {Natural hazards and earth system sciences}, volume = {12}, journal = {Natural hazards and earth system sciences}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-12-3287-2012}, pages = {3287 -- 3306}, year = {2012}, abstract = {In this paper, we analyse the effectiveness of flood management measures based on the concept known as "retaining water in the landscape". The investigated measures include afforestation, micro-ponds and small-reservoirs. A comparative and model-based methodological approach has been developed and applied for three meso-scale catchments located in different European hydro-climatological regions: Poyo (184 km(2)) in the Spanish Mediterranean, Upper Iller (954 km(2)) in the German Alps and Kamp (621 km(2)) in Northeast-Austria representing the Continental hydro-climate. This comparative analysis has found general similarities in spite of the particular differences among studied areas. In general terms, the flood reduction through the concept of "retaining water in the landscape" depends on the following factors: the storage capacity increase in the catchment resulting from such measures, the characteristics of the rainfall event, the antecedent soil moisture condition and the spatial distribution of such flood management measures in the catchment. In general, our study has shown that, this concept is effective for small and medium events, but almost negligible for the largest and less frequent floods: this holds true for all different hydro-climatic regions, and with different land-use, soils and morphological settings.}, language = {en} } @article{BronstertCreutzfeldtGraeffetal.2012, author = {Bronstert, Axel and Creutzfeldt, Benjamin and Gr{\"a}ff, Thomas and Hajnsek, Irena and Heistermann, Maik and Itzerott, Sibylle and Jagdhuber, Thomas and Kneis, David and Lueck, Erika and Reusser, Dominik and Zehe, Erwin}, title = {Potentials and constraints of different types of soil moisture observations for flood simulations in headwater catchments}, series = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, volume = {60}, journal = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0921-030X}, doi = {10.1007/s11069-011-9874-9}, pages = {879 -- 914}, year = {2012}, abstract = {Flood generation in mountainous headwater catchments is governed by rainfall intensities, by the spatial distribution of rainfall and by the state of the catchment prior to the rainfall, e. g. by the spatial pattern of the soil moisture, groundwater conditions and possibly snow. The work presented here explores the limits and potentials of measuring soil moisture with different methods and in different scales and their potential use for flood simulation. These measurements were obtained in 2007 and 2008 within a comprehensive multi-scale experiment in the Weisseritz headwater catchment in the Ore-Mountains, Germany. The following technologies have been applied jointly thermogravimetric method, frequency domain reflectometry (FDR) sensors, spatial time domain reflectometry (STDR) cluster, ground-penetrating radar (GPR), airborne polarimetric synthetic aperture radar (polarimetric SAR) and advanced synthetic aperture radar (ASAR) based on the satellite Envisat. We present exemplary soil measurement results, with spatial scales ranging from point scale, via hillslope and field scale, to the catchment scale. Only the spatial TDR cluster was able to record continuous data. The other methods are limited to the date of over-flights (airplane and satellite) or measurement campaigns on the ground. For possible use in flood simulation, the observation of soil moisture at multiple scales has to be combined with suitable hydrological modelling, using the hydrological model WaSiM-ETH. Therefore, several simulation experiments have been conducted in order to test both the usability of the recorded soil moisture data and the suitability of a distributed hydrological model to make use of this information. The measurement results show that airborne-based and satellite-based systems in particular provide information on the near-surface spatial distribution. However, there are still a variety of limitations, such as the need for parallel ground measurements (Envisat ASAR), uncertainties in polarimetric decomposition techniques (polarimetric SAR), very limited information from remote sensing methods about vegetated surfaces and the non-availability of continuous measurements. The model experiments showed the importance of soil moisture as an initial condition for physically based flood modelling. However, the observed moisture data reflect the surface or near-surface soil moisture only. Hence, only saturated overland flow might be related to these data. Other flood generation processes influenced by catchment wetness in the subsurface such as subsurface storm flow or quick groundwater drainage cannot be assessed by these data. One has to acknowledge that, in spite of innovative measuring techniques on all spatial scales, soil moisture data for entire vegetated catchments are still today not operationally available. Therefore, observations of soil moisture should primarily be used to improve the quality of continuous, distributed hydrological catchment models that simulate the spatial distribution of moisture internally. Thus, when and where soil moisture data are available, they should be compared with their simulated equivalents in order to improve the parameter estimates and possibly the structure of the hydrological model.}, language = {en} } @article{MohrMontgomeryHuberetal.2012, author = {Mohr, Christian Heinrich and Montgomery, David R. and Huber, Anton and Bronstert, Axel and Iroume, Andres}, title = {Streamflow response in small upland catchments in the Chilean coastal range to the M-W 8.8 Maule earthquake on 27 February 2010}, series = {Journal of geophysical research : Earth surface}, volume = {117}, journal = {Journal of geophysical research : Earth surface}, number = {23}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0148-0227}, doi = {10.1029/2011JF002138}, pages = {16}, year = {2012}, abstract = {Hydrological response to earthquakes has long been observed, yet the mechanisms responsible still remain unclear and likely vary in space and time. This study explores the base flow response in small upland catchments of the Coastal Range of south-central Chile after the M-W 8.8 Maule earthquake of 27 February 2010. An initial decline in streamflow followed by an increase of up to 400\% of the discharge measured immediately before the earthquake occurred, and diurnal streamflow oscillations intensified after the earthquake. Neither response time, nor time to maximum streamflow discharge showed any relationship with catchment topography or size, suggesting non-uniform release of water across the catchments. The fast response, unaffected stream water temperatures and a simple diffusion model point to the sandy saprolite as the source of the excess water. Base flow recession analysis reveals no evidence for substantial enhancement of lateral hydraulic conductivity in the saprolite after the earthquake. Seismic energy density reached similar to 170 J/m(3) for the main shock and similar to 0.9 J/m(3) for the aftershock, exceeding the threshold for liquefaction by undrained consolidation only during the main shock. Although increased hydraulic gradient due to ground acceleration-triggered, undrained consolidation is consistent with empirical magnitude-distance relationships for liquefaction, the lack of independent evidence for liquefaction means that enhanced vertical permeability (probably in combination with co-seismic near-surface dilatancy) cannot be excluded as a potential mechanism. Undrained consolidation may have released additional water from the saturated saprolite into the overlying soil, temporarily reducing water transfer to the creeks but enlarging the cross-section of the saturated zone, which in turn enhanced streamflow after establishment of a new hydraulic equilibrium. The enlarged saturated zone facilitated water uptake by roots and intensified evapotranspiration.}, language = {en} } @article{ConradtWechsungBronstert2013, author = {Conradt, Tobias and Wechsung, F. and Bronstert, Axel}, title = {Three perceptions of the evapotranspiration landscape comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances}, series = {Hydrology and earth system sciences : HESS}, volume = {17}, journal = {Hydrology and earth system sciences : HESS}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-17-2947-2013}, pages = {2947 -- 2966}, year = {2013}, abstract = {A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.}, language = {en} } @article{HuangHattermannKrysanovaetal.2013, author = {Huang, Shaochun and Hattermann, Fred Fokko and Krysanova, Valentina and Bronstert, Axel}, title = {Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model}, series = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, volume = {116}, journal = {Climatic change : an interdisciplinary, intern. journal devoted to the description, causes and implications of climatic change}, number = {3-4}, publisher = {Springer}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-012-0586-2}, pages = {631 -- 663}, year = {2013}, abstract = {A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961-2000 (deviation within +/- 10 \%). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021-2060, 2061-2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.}, language = {en} } @article{CostaFoersterdeAraujoetal.2013, author = {Costa, Alexandre Cunha and F{\"o}rster, Saskia and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Analysis of channel transmission losses in a dryland river reach in north-eastern Brazil using streamflow series, groundwater level series and multi-temporal satellite data}, series = {Hydrological processes}, volume = {27}, journal = {Hydrological processes}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1099-1085}, doi = {10.1002/hyp.9243}, pages = {1046 -- 1060}, year = {2013}, abstract = {Scarcity of hydrological data, especially streamflow discharge and groundwater level series, restricts the understanding of channel transmission losses (TL) in drylands. Furthermore, the lack of information on spatial river dynamics encompasses high uncertainty on TL analysis in large rivers. The objective of this study was to combine the information from streamflow and groundwater level series with multi-temporal satellite data to derive a hydrological concept of TL for a reach of the Middle Jaguaribe River (MJR) in semi-arid north-eastern Brazil. Based on this analysis, we proposed strategies for its modelling and simulation. TL take place in an alluvium, where river and groundwater can be considered to be hydraulically connected. Most losses certainly infiltrated only through streambed and levees and not through the flood plains, as could be shown by satellite image analysis. TL events whose input river flows were smaller than a threshold did not reach the outlet of the MJR. TL events whose input flows were higher than this threshold reached the outlet losing on average 30\% of their input. During the dry seasons (DS) and at the beginning of rainy seasons (DS/BRS), no river flow is expected for pre-events, and events have vertical infiltration into the alluvium. At the middle and the end of the rainy seasons (MRS/ERS), river flow sustained by base flow occurs before/after events, and lateral infiltration into the alluvium plays a major role. Thus, the MJR shifts from being a losing river at DS/BRS to become a losing/gaining (mostly losing) river at MRS/ERS. A model of this system has to include the coupling of river and groundwater flow processes linked by a leakage approach.}, language = {en} } @article{JagdhuberHajnsekBronstertetal.2013, author = {Jagdhuber, Thomas and Hajnsek, Irena and Bronstert, Axel and Papathanassiou, Konstantinos Panagiotis}, title = {Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition}, series = {IEEE transactions on geoscience and remote sensing}, volume = {51}, journal = {IEEE transactions on geoscience and remote sensing}, number = {4}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0196-2892}, doi = {10.1109/TGRS.2012.2209433}, pages = {2201 -- 2215}, year = {2013}, abstract = {The estimation of volumetric soil moisture under low agricultural vegetation from fully polarimetric synthetic aperture radar (SAR) data at L-band using a multi-angular polarimetric decomposition is investigated. Radar polarimetry provides the framework to decompose the backscattered signal into different canonical scattering mechanisms referring to scattering contributions from the underlying soil and the vegetation cover. Multiangular observation diversity further increases the information space for soil moisture inversion enabling higher inversion rates and a stable inversion performance. The developed approach was applied on the multi-angular L-band data set acquired by German Aerospace Center's ESAR sensor as part of the OPAQUE campaign in 2008. The obtained results are compared against ground measurements collected by the OPAQUE team over a variety of vegetated agricultural fields. The validation of the estimated against ground measured soil moisture results in an root mean square error level of 6-8 vol.\% including all test fields with a variety of crop types.}, language = {en} } @article{MohrCoppusIroumeetal.2013, author = {Mohr, Christian Heinrich and Coppus, Ruben and Iroume, Andres and Huber, Anton and Bronstert, Axel}, title = {Runoff generation and soil erosion processes after clear cutting}, series = {Journal of geophysical research : Earth surface}, volume = {118}, journal = {Journal of geophysical research : Earth surface}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/jgrf.20047}, pages = {814 -- 831}, year = {2013}, abstract = {Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schlaeger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1027-5606}, doi = {10.5194/hess-14-1007-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{VineyBormannBreueretal.2009, author = {Viney, Neil R. and Bormann, Helge and Breuer, Lutz and Bronstert, Axel and Croke, Barry F. W. and Frede, Hans-Georg and Gr{\"a}ff, Thomas and Hubrechts, Lode and Huisman, Johan A. and Jakeman, Anthony J. and Kite, Geoffrey W. and Lanini, Jordan and Leavesley, George and Lettenmaier, Dennis P. and Lindstroem, Goeran and Seibert, Jan and Sivapalan, Murugesu and Willems, Patrick}, title = {Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II : ensemble combinations and predictions}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2008.05.006}, year = {2009}, abstract = {This paper reports on a project to compare predictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble predictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two predictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble predictions. Both the single-model ensembles and the multi-model ensembles are shown to give predictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9- year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six predictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles. in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble predictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that predict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non- stationarity of the climate series and possible cross-correlations between models.}, language = {en} } @article{MuellerFranckeBatallaVillanuevaetal.2009, author = {M{\"u}ller, Eva Nora and Francke, Till and Batalla Villanueva, Ramon J. and Bronstert, Axel}, title = {Modelling the effects of land-use change on runoff and sediment yield for a meso-scale catchment in the Southern Pyrenees}, issn = {0341-8162}, doi = {10.1016/j.catena.2009.06.007}, year = {2009}, abstract = {The Southern Pre-Pyrenees experienced a substantial land-use change over the second half of the 20th century owing to the reduction of agricultural activities towards the formation of a more natural forest landscape. The land-use change over the last 50 years with subsequent effects on water and sediment export was modelled with the process-based, spatially semi-distributed WASA-SED model for the meso-scale Canalda catchment in Catalonia, Spain. It was forwarded that the model yielded plausible results for runoff and sediment yield dynamics without the need of calibration, although the model failed to reproduce the shape of the hydrograph and the total discharge of several individual rainstorm events, hence the simulation capabilities are not yet considered sufficient for decision-making purposes for land management. As there are only a very limited amount of measured data available on sediment budgets with altered land-use and climate change settings, the WASA-SED model was used to obtain qualitative estimates on the effects of past and future change scenarios to derive a baseline for hypothesis building and future discussion on the evolution of sediment budgets in such a dryland setting. Simulating the effects of the past land-use change, the model scenarios resulted in a decrease of up to 75\% of the annual sediment yield. whereas modelled runoff remained almost constant over the last 50 years. The relative importance of environmental change was evaluated by comparing the impact on sediment export of land-use change, that are driven by socio-economic factors, with climate change projections for changes in the rainfall regime. The modelling results suggest that a 20\% decrease in annual rainfall results in a decrease in runoff and sediment yield, thus an ecosystem stabilisation in regard to sediment export which can only be achieved by a substantial land-use change equivalent to a complete afforestation. At the same time, a 20\% increase in rainfall causes a large export of water and sediment resources out of the catchment, equivalent to an intensive agricultural use of 100\% of the catchment area. For wet years, the effects of agricultural intensification are more pronounced, so that in this case the intensive land-use change has a significantly larger impact on sediment generation than climate change. The WASA-SED model proved capable in quantifying the impacts of actual and potential environmental change, but the reliability of the simulation results is still circumscribed by considerable parameterisation and model uncertainties.}, language = {en} } @article{MedeirosdeAraujoBronstert2009, author = {Medeiros, Pedro Henrique Augusto and de Araujo, Jose Carlos and Bronstert, Axel}, title = {Interception measurements and assessment of Gash model performance for a tropical semi-arid region}, issn = {0045-6888}, year = {2009}, abstract = {Semi-arid environments usually face water scarcity and conflicts for its use; therefore a complete understanding of the water balance in these regions is desired. To evaluate interception, measurements of precipitation, throughfall and stemflow were carried out in a Brazilian tropical semi-arid experimental watershed with well preserved Caatinga vegetation. Data analysis indicates that interception losses correspond to 13\% of total rainfall, representing an important process in the watershed's water balance, where runoff is only 6\% of total precipitation. Gash interception model was applied in the region with good results for long term simulation. Nevertheless, the model produced significant but not systematic errors on a daily basis. This was attributed to its incapability of representing the temporal variation of precipitation during the event, which is a major factor affecting interception. Rainfall intensity was shown to be a good parameter to determine an applicability threshold for Gash model in the study area.}, language = {en} } @article{BronstertKneisBogena2009, author = {Bronstert, Axel and Kneis, David and Bogena, Heye R.}, title = {Interactions and feedbacks in hydrological change : relevance and possibilities of modelling}, issn = {1439-1783}, year = {2009}, abstract = {The hydrological cycle is a dynamic system by its nature, but sometimes accelerated through anthropogenic activity. A "hydrological change" (i.e. a water cycle that is significantly changing over a longer period of time) can be very different in character, depending on the specific natural conditions and the underlying spatial and temporal scales. Such changes may affect the availability and quality of water as essential pre-requisites for human development and ecosystem stability. Hydrological extremes, such as floods and droughts, may also be affected, what is also vitally important, because of their profound economic and societal impacts. Anthropogenically induced hydrological change can be attributed to three main external causes: first, the Earth's climate is changing significantly and thus directly affecting the terrestrial hydro-systems via the exchange of energy and heat. The second major issue is the land cover and its management that has been modified fundamentally by conversion of land for agriculture, forestry, and other purposes such as industrialisation and urbanisation. Finally, water resources are being used more than ever for human development, especially for agriculture, industrial activities, and navigation. If the regional terrestrial hydrological cycle is changing and counter-measures are desirable, it is from a scientific perspective mandatory to understand the extent and nature of such changes, and, especially, to identify their possible anthropogenic origin. There are, however, fundamental gaps in our knowledge, in particular about the role of feedbacks between individual processes and compartments of the hydrological cycle or the relevance of the interactions with other sub-systems of our planet, such as the atmosphere or the vegetation. This paper mentions several examples of hydrological change and discusses their identification, interaction processes, and feedback mechanisms, along with modelling issues. The possibilities and limitations of modelling are demonstrated by means of two studies: one from the river-lake system on the Middle-Havel River and one from the catchment of the Wahnbach Reservoir. The applied model systems comprise a series of consecutively coupled individual models (so-called one-way-coupling). Model systems that are able reflect feedback effects (two-way- coupling) are still in the development stage. It became clear that the applied model systems were able to reproduce the observed dynamics of the hydrological cycle and of selected matter fluxes. However, one has to be aware that the simulated time periods and scenarios represent rather moderately transient conditions, what is the justification why the one-way-coupling seems to be applicable. Furthermore, it was shown that the modelling uncertainty is considerably large. Nevertheless, this uncertainty can be distinguished from effects of changed internal systems dynamics or from changed boundary conditions, what is a basis for the usability of such model systems for prognostic purposes.}, language = {en} } @article{BreuerWillemsBormannetal.2009, author = {Breuer, Lutz and Willems, Patrick and Bormann, Helge and Bronstert, Axel and Croke, Barry and Frede, Hans Georg and Gr{\"a}ff, Thomas and Hubrechts, Lode and Kite, Geoffrey and Lanini, Jordan and Leavesley, George and Lettenmaier, Dennis P. and Lindstroem, Goeran and Seibert, Jan and Sivapalan, Mayuran and Viney, Neil R.}, title = {Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM) : I: model intercomparison with current land use}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2008.10.003}, year = {2009}, abstract = {This paper introduces the project on 'Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM)' that aims at investigating the envelope of predictions on changes in hydrological fluxes due to land use change. As part of a series of four papers, this paper outlines the motivation and setup of LUCHEM, and presents a model intercomparison for the present-day simulation results. Such an intercomparison provides a valuable basis to investigate the effects of different model structures on model predictions and paves the ground for the analysis of the performance of multi-model ensembles and the reliability of the scenario predictions in companion papers. in this study, we applied a set of 10 lumped, semi-lumped and fully distributed hydrological models that have been previously used in land use change studies to the low mountainous Dill catchment. Germany. Substantial differences in model performance were observed with Nash-Sutcliffe efficiencies ranging from 0.53 to 0.92. Differences in model performance were attributed to (1) model input data, (2) model calibration and (3) the physical basis of the models. The models were applied with two sets of input data: an original and a homogenized data set. This homogenization of precipitation, temperature and leaf area index was performed to reduce the variation between the models. Homogenization improved the comparability of model simulations and resulted in a reduced average bias, although some variation in model data input remained. The effect of the physical differences between models on the long-term water balance was mainly attributed to differences in how models represent evapotranspiration. Semi-lumped and lumped conceptual models slightly outperformed the fully distributed and physically based models. This was attributed to the automatic model calibration typically used for this type of models. Overall, however, we conclude that there was no superior model if several measures of model performance are considered and that all models are suitable to participate in further multi-model ensemble set-ups and land use change scenario investigations.}, language = {en} } @article{ZeheGraeffMorgneretal.2010, author = {Zehe, Erwin and Gr{\"a}ff, Thomas and Morgner, Markus and Bauer, Andreas and Bronstert, Axel}, title = {Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains}, issn = {1027-5606}, doi = {10.5194/hess-14-873-2010}, year = {2010}, abstract = {This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weisseritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92\% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed average soil conditions observed at both field sites. We conclude that the proposed sampling strategy of clustering TDR probes is suitable to assess unbiased average soil moisture dynamics in critical functional units, in this case the forested site, which is a much better predictor for event scale runoff formation than pre-event discharge. Long term monitoring of such critical landscape elements could maybe yield valuable information for flood warning in headwaters. We thus think that STDR provides a good intersect of the advantages of permanent sampling and spatially highly resolved soil moisture sampling using mobile rods.}, language = {en} } @article{GraeffZeheSchlaegeretal.2010, author = {Gr{\"a}ff, Thomas and Zehe, Erwin and Schl{\"a}ger, Stefan and Morgner, Markus and Bauer, Andreas and Becker, Rolf and Creutzfeldt, Benjamin and Bronstert, Axel}, title = {A quality assessment of spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments}, issn = {1812-2108}, doi = {10.5194/hessd-7-269-2010}, year = {2010}, abstract = {Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogonous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16\% were in good agreement with independent measurements.}, language = {en} } @article{BronstertKrolJaegeretal.2000, author = {Bronstert, Axel and Krol, Marten S. and Jaeger, Annekathrin and G{\"u}ntner, Andreas and Hauschild, M. and D{\"o}ll, P.}, title = {Integrated modelling of water availability an management in the semi-arid Notheast of Brazil}, year = {2000}, language = {en} } @misc{KormannFranckeRenneretal.2015, author = {Kormann, C. and Francke, Till and Renner, M. and Bronstert, Axel}, title = {Attribution of high resolution streamflow trends in Western Austria}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96560}, pages = {1225 -- 1245}, year = {2015}, abstract = {The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At midaltitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime.}, language = {en} } @article{KormannFranckeRenneretal.2015, author = {Kormann, C. and Francke, Till and Renner, M. and Bronstert, Axel}, title = {Attribution of high resolution streamflow trends in Western Austria}, series = {Hydrology and earth system sciences}, volume = {19}, journal = {Hydrology and earth system sciences}, publisher = {EGU}, address = {Katlenburg-Lindau}, issn = {1607-7938}, doi = {10.5194/hess-19-1225-2015}, pages = {1225 -- 1245}, year = {2015}, abstract = {The results of streamflow trend studies are often characterized by mostly insignificant trends and inexplicable spatial patterns. In our study region, Western Austria, this applies especially for trends of annually averaged runoff. However, analysing the altitudinal aspect, we found that there is a trend gradient from higher-altitude to lower-altitude stations, i.e. a pattern of mostly positive annual trends at higher stations and negative ones at lower stations. At midaltitudes, the trends are mostly insignificant. Here we hypothesize that the streamflow trends are caused by the following two main processes: on the one hand, melting glaciers produce excess runoff at higher-altitude watersheds. On the other hand, rising temperatures potentially alter hydrological conditions in terms of less snowfall, higher infiltration, enhanced evapotranspiration, etc., which in turn results in decreasing streamflow trends at lower-altitude watersheds. However, these patterns are masked at mid-altitudes because the resulting positive and negative trends balance each other. To support these hypotheses, we attempted to attribute the detected trends to specific causes. For this purpose, we analysed trends of filtered daily streamflow data, as the causes for these changes might be restricted to a smaller temporal scale than the annual one. This allowed for the explicit determination of the exact days of year (DOYs) when certain streamflow trends emerge, which were then linked with the corresponding DOYs of the trends and characteristic dates of other observed variables, e.g. the average DOY when temperature crosses the freezing point in spring. Based on these analyses, an empirical statistical model was derived that was able to simulate daily streamflow trends sufficiently well. Analyses of subdaily streamflow changes provided additional insights. Finally, the present study supports many modelling approaches in the literature which found out that the main drivers of alpine streamflow changes are increased glacial melt, earlier snowmelt and lower snow accumulation in wintertime.}, language = {en} } @article{VormoorLawrenceHeistermannetal.2015, author = {Vormoor, Klaus Josef and Lawrence, D. and Heistermann, Maik and Bronstert, Axel}, title = {Climate change impacts on the seasonality and generation processes of floods}, series = {Hydrology and earth system sciences : HESS}, volume = {19}, journal = {Hydrology and earth system sciences : HESS}, number = {2}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-19-913-2015}, pages = {913 -- 931}, year = {2015}, abstract = {Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961-1990) and a future (2071-2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature.We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality, which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions.}, language = {en} } @misc{VormoorLawrenceHeistermannetal.2015, author = {Vormoor, Klaus Josef and Lawrence, D. and Heistermann, Maik and Bronstert, Axel}, title = {Climate change impacts on the seasonality and generation processes of floods}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84366}, year = {2015}, abstract = {Climate change is likely to impact the seasonality and generation processes of floods in the Nordic countries, which has direct implications for flood risk assessment, design flood estimation, and hydropower production management. Using a multi-model/multi-parameter approach to simulate daily discharge for a reference (1961-1990) and a future (2071-2099) period, we analysed the projected changes in flood seasonality and generation processes in six catchments with mixed snowmelt/rainfall regimes under the current climate in Norway. The multi-model/multi-parameter ensemble consists of (i) eight combinations of global and regional climate models, (ii) two methods for adjusting the climate model output to the catchment scale, and (iii) one conceptual hydrological model with 25 calibrated parameter sets. Results indicate that autumn/winter events become more frequent in all catchments considered, which leads to an intensification of the current autumn/winter flood regime for the coastal catchments, a reduction of the dominance of spring/summer flood regimes in a high-mountain catchment, and a possible systematic shift in the current flood regimes from spring/summer to autumn/winter in the two catchments located in northern and south-eastern Norway. The changes in flood regimes result from increasing event magnitudes or frequencies, or a combination of both during autumn and winter. Changes towards more dominant autumn/winter events correspond to an increasing relevance of rainfall as a flood generating process (FGP) which is most pronounced in those catchments with the largest shifts in flood seasonality. Here, rainfall replaces snowmelt as the dominant FGP primarily due to increasing temperature.We further analysed the ensemble components in contributing to overall uncertainty in the projected changes and found that the climate projections and the methods for downscaling or bias correction tend to be the largest contributors. The relative role of hydrological parameter uncertainty, however, is highest for those catchments showing the largest changes in flood seasonality, which confirms the lack of robustness in hydrological model parameterization for simulations under transient hydrometeorological conditions.}, language = {en} }