@article{EngelPiontekGrossartetal.2014, author = {Engel, Anja and Piontek, Judith and Grossart, Hans-Peter and Riebesell, Ulf and Schulz, Kai Georg and Sperling, Martin}, title = {Impact of CO2 enrichment on organic matter dynamics during nutrient induced coastal phytoplankton blooms}, series = {Journal of plankton research}, volume = {36}, journal = {Journal of plankton research}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbt125}, pages = {641 -- 657}, year = {2014}, abstract = {A mesocosm experiment was conducted to investigate the impact of rising fCO(2) on the build-up and decline of organic matter during coastal phytoplankton blooms. Five mesocosms (similar to 38 mA(3) each) were deployed in the Baltic Sea during spring (2009) and enriched with CO2 to yield a gradient of 355-862 A mu atm. Mesocosms were nutrient fertilized initially to induce phytoplankton bloom development. Changes in particulate and dissolved organic matter concentrations, including dissolved high-molecular weight (> 1 kDa) combined carbohydrates, dissolved free and combined amino acids as well as transparent exopolymer particles (TEP), were monitored over 21 days together with bacterial abundance, and hydrolytic extracellular enzyme activities. Overall, organic matter followed well-known bloom dynamics in all CO2 treatments alike. At high fCO(2,) higher Delta POC:Delta PON during bloom rise, and higher TEP concentrations during bloom peak, suggested preferential accumulation of carbon-rich components. TEP concentration at bloom peak was significantly related to subsequent sedimentation of particulate organic matter. Bacterial abundance increased during the bloom and was highest at high fCO(2). We conclude that increasing fCO(2) supports production and exudation of carbon-rich components, enhancing particle aggregation and settling, but also providing substrate and attachment sites for bacteria. More labile organic carbon and higher bacterial abundance can increase rates of oxygen consumption and may intensify the already high risk of oxygen depletion in coastal seas in the future.}, language = {en} } @phdthesis{Fabian2018, author = {Fabian, Jenny}, title = {Effects of algae on microbial carbon cycling in freshwaters}, doi = {10.25932/publishup-42222}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422225}, school = {Universit{\"a}t Potsdam}, pages = {90}, year = {2018}, abstract = {Microbial processing of organic matter (OM) in the freshwater biosphere is a key component of global biogeochemical cycles. Freshwaters receive and process valuable amounts of leaf OM from their terrestrial landscape. These terrestrial subsidies provide an essential source of energy and nutrients to the aquatic environment as a function of heterotrophic processing by fungi and bacteria. Particularly in freshwaters with low in-situ primary production from algae (microalgae, cyanobacteria), microbial turnover of leaf OM significantly contributes to the productivity and functioning of freshwater ecosystems and not least their contribution to global carbon cycling. Based on differences in their chemical composition, it is believed that leaf OM is less bioavailable to microbial heterotrophs than OM photosynthetically produced by algae. Especially particulate leaf OM, consisting predominantly of structurally complex and aromatic polymers, is assumed highly resistant to enzymatic breakdown by microbial heterotrophs. However, recent research has demonstrated that OM produced by algae promotes the heterotrophic breakdown of leaf OM in aquatic ecosystems, with profound consequences for the metabolism of leaf carbon (C) within microbial food webs. In my thesis, I aimed at investigating the underlying mechanisms of this so called priming effect of algal OM on the use of leaf C in natural microbial communities, focusing on fungi and bacteria. The works of my thesis underline that algal OM provides highly bioavailable compounds to the microbial community that are quickly assimilated by bacteria (Paper II). The substrate composition of OM pools determines the proportion of fungi and bacteria within the microbial community (Paper I). Thereby, the fraction of algae OM in the aquatic OM pool stimulates the activity and hence contribution of bacterial communities to leaf C turnover by providing an essential energy and nutrient source for the assimilation of the structural complex leaf OM substrate. On the contrary, the assimilation of algal OM remains limited for fungal communities as a function of nutrient competition between fungi and bacteria (Paper I, II). In addition, results provide evidence that environmental conditions determine the strength of interactions between microalgae and heterotrophic bacteria during leaf OM decomposition (Paper I, III). However, the stimulatory effect of algal photoautotrophic activities on leaf C turnover remained significant even under highly dynamic environmental conditions, highlighting their functional role for ecosystem processes (Paper III). The results of my thesis provide insights into the mechanisms by which algae affect the microbial turnover of leaf C in freshwaters. This in turn contributes to a better understanding of the function of algae in freshwater biogeochemical cycles, especially with regard to their interaction with the heterotrophic community.}, language = {en} } @article{GlombitzaStockheckeSchubertetal.2013, author = {Glombitza, Clemens and Stockhecke, Mona and Schubert, Carsten J. and Vetter, Alexandra and Kallmeyer, Jens}, title = {Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia,Turkey)}, series = {Frontiers in microbiology}, volume = {4}, journal = {Frontiers in microbiology}, number = {28}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2013.00209}, pages = {12}, year = {2013}, abstract = {As part of the International Continental Drilling Program deep lake drilling project Paleo Van, we investigated sulfate reduction (SR) in deep sediment cores of the saline, alkaline (salinity 21.4\%0, alkalinity 155 m mEq-1, pH 9.81) Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB) and at Ahlat Ridge (AR) and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. SR rates (SRR) were low (<22 nmol cm-3 day-1) compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. SR could be detected down to 19 mblf (meters below lake floor) at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM) concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM.VVe thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical, or chemical parameters over relatively short distances.}, language = {en} } @phdthesis{Jongejans2022, author = {Jongejans, Loeka Laura}, title = {Organic matter stored in ice-rich permafrost}, doi = {10.25932/publishup-56491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564911}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 178}, year = {2022}, abstract = {The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question "how does permafrost thaw affect its OM storage?" More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.}, language = {en} } @article{MusolffSelleButtneretal.2017, author = {Musolff, Andreas and Selle, Benny and Buttner, Olaf and Opitz, Michael and Tittel, J{\"o}rg}, title = {Unexpected release of phosphate and organic carbon to streams linked to declining nitrogen depositions}, series = {Global change biology}, volume = {23}, journal = {Global change biology}, publisher = {Wiley}, address = {Hoboken}, issn = {1354-1013}, doi = {10.1111/gcb.13498}, pages = {1891 -- 1901}, year = {2017}, abstract = {Reductions in emissions have successfully led to a regional decline in atmospheric nitrogen depositions over the past 20 years. By analyzing long-term data from 110 mountainous streams draining into German drinking water reservoirs, nitrate concentrations indeed declined in the majority of catchments. Furthermore, our meta-analysis indicates that the declining nitrate levels are linked to the release of dissolved iron to streams likely due to a reductive dissolution of iron(III) minerals in riparian wetland soils. This dissolution process mobilized adsorbed compounds, such as phosphate, dissolved organic carbon and arsenic, resulting in concentration increases in the streams and higher inputs to receiving drinking water reservoirs. Reductive mobilization was most significant in catchments with stream nitrate concentrations < 6 mg L-1. Here, nitrate, as a competing electron acceptor, was too low in concentration to inhibit microbial iron(III) reduction. Consequently, observed trends were strongest in forested catchments, where nitrate concentrations were unaffected by agricultural and urban sources and which were therefore sensitive to reductions of atmospheric nitrogen depositions. We conclude that there is strong evidence that the decline in nitrogen deposition toward pre-industrial conditions lowers the redox buffer in riparian soils, destabilizing formerly fixed problematic compounds, and results in serious implications for water quality.}, language = {en} } @article{ZhangChengjunFanRongLiJunetal.2013, author = {Zhang Chengjun, and Fan Rong, and Li Jun, and Mischke, Steffen and Dembele, Blaise and Hu Xiaolan,}, title = {Carbon and oxygen isotopic compositions - how lacustrine environmental factors respond in northwestern and northeastern China}, series = {Acta geologica Sinica : english edition}, volume = {87}, journal = {Acta geologica Sinica : english edition}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1000-9515}, doi = {10.1111/1755-6724.12133}, pages = {1344 -- 1354}, year = {2013}, abstract = {Surface lake sediments, 28 from Hoh Xil, 24 from northeastern China, 99 from Lake Bosten, 31 from Ulungur and 26 from Heihai were collected to determine C-13 and O-18 values. Considering the impact factors, conductivity, alkalinity, pH, TOC, C/N and carbonate-content in the sediments, Cl, P, S, and metal element ratios of Mg/Ca, Sr/Ca, Fe/Mn of bulk sediments as environmental variables enable evaluation of their influences on C-13 and O-18 using principal component analysis (PCA) method. The closure and residence time of lakes can influence the correlation between C-13 and O-18. Lake water will change from fresh to brackish with increasing reduction and eutrophication effects. Mg/Ca in the bulk sediment indicates the characteristic of residence time, Sr/Ca and Fe/Mn infer the salinity of lakes. Carbonate formation processes and types can influence the C-13-O-18 correlation. O-18 will be heavier from Mg-calcite and aragonite formed in a high-salinity water body than calcite formed in freshwater conditions. When carbonate content is less than 30\%, there is no relationship with either C-13 or O-18, and also none between C-13 and O-18. More than 30\%, carbonate content, however, co-varies highly to C-13 and O-18, and there is also a high correlation between C-13 and O-18. Vegetation conditions and primary productivity of lakes can influence the characteristics of C-13 and O-18, and their co-variance. Total organic matter content (TOC) in the sediments is higher with more terrestrial and submerged plants infilling. In northeastern and northwestern China, when organic matter in the lake sediments comes from endogenous floating organisms and algae, the C-13 value is high. C-13 is in the range of -4\%o to 0 parts per thousand when organic matter comes mainly from floating organisms (C/N<6); in the range of -4 parts per thousand to 8 parts per thousand when organic matter comes from diatoms (C/N=6 to 8); and -8 parts per thousand to -4 parts per thousand when organic matter comes from aquatic and terrestrial plants (C/N>8).}, language = {en} } @misc{ZibulskiWesenerWilkesetal.2017, author = {Zibulski, Romy and Wesener, Felix and Wilkes, Heinz and Plessen, Birgit and Pestryakova, Luidmila Agafyevna and Herzschuh, Ulrike}, title = {C / N ratio, stable isotope (δ 13 C, δ 15 N), and n-alkane patterns of brown mosses along hydrological gradients of low-centred polygons of the Siberian Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {672}, issn = {1866-8372}, doi = {10.25932/publishup-41710}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417104}, pages = {14}, year = {2017}, abstract = {Mosses are a major component of the arctic vegetation, particularly in wetlands. We present C / N atomic ratio, delta C-13 and delta N-15 data of 400 brown-moss samples belonging to 10 species that were collected along hydrological gradients within polygonal mires located on the southern Taymyr Peninsula and the Lena River delta in northern Siberia. Additionally, n-alkane patterns of six of these species (16 samples) were investigated. The aim of the study is to see whether the inter-and intraspecific differences in C / N, isotopic compositions and n-alkanes are indicative of habitat, particularly with respect to water level. Overall, we find high variability in all investigated parameters for two different moisture-related groups of moss species. The C / N ratios range between 11 and 53 (median: 32) and show large variations at the intraspecific level. However, species preferring a dry habitat (xero-mesophilic mosses) show higher C / N ratios than those preferring a wet habitat (meso-hygrophilic mosses). The delta C-13 values range between 37.0 and 22.5\% (median D 27.8 \%). The delta N-15 values range between 6.6 and C 1.7\%(median D 2.2 \%). We find differences in delta C-13 and delta N-15 compositions between both habitat types. For some species of the meso-hygrophilic group, we suggest that a relationship between the individ-ual habitat water level and isotopic composition can be inferred as a function of microbial symbiosis. The n-alkane distribution also shows differences primarily between xeromesophilic and meso-hygrophilic mosses, i. e. having a dominance of n-alkanes with long (n-C29, n-C31 /and intermediate (n-C25 /chain lengths, respectively. Overall, our results reveal that C / N ratios, isotopic signals and n-alkanes of studied brown-moss taxa from polygonal wetlands are characteristic of their habitat.}, language = {en} }