@article{CabezaMishurovaGarcesetal.2017, author = {Cabeza, Sandra and Mishurova, Tatiana and Garc{\´e}s, Gonzales and Sevostianov, Igor and Requena, Guillermo and Bruno, Giovanni}, title = {Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two-ceramic reinforcements}, series = {Journal of materials science}, volume = {52}, journal = {Journal of materials science}, publisher = {Springer}, address = {New York}, issn = {0022-2461}, doi = {10.1007/s10853-017-1182-7}, pages = {10198 -- 10216}, year = {2017}, abstract = {Two composites, consisting of an as-cast AlSi12CuMgNi alloy reinforced with 15 vol\% Al2O3 short fibres and with 7 vol\% Al2O3 short fibres + 15 vol\% SiC particles, were studied. Synchrotron computed tomography disclosed distribution, orientation, and volume fraction of the different phases. In-situ compression tests during neutron diffraction in direction parallel to the fibres plane revealed the load partition between phases. Internal damage (fragmentation) of the Si phase and Al2O3 fibres was directly observed in CT reconstructions. Significant debonding between Al matrix and SiC particles was also found. Finally, based on the Maxwell scheme, a micromechanical model was utilized for the new composite with two-ceramic reinforcements; it rationalizes the experimental data and predicts the evolution of all internal stress components in each phase.}, language = {en} } @article{EvsevleevMishurovaCabezaetal.2018, author = {Evsevleev, Sergei and Mishurova, Tatiana and Cabeza, Sandra and Koos, R. and Sevostianov, Igor and Garc{\´e}s, Gonzales and Requena, Guillermo and Fernandez, R. and Bruno, Giovanni}, title = {The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy}, series = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, volume = {736}, journal = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2018.08.070}, pages = {453 -- 464}, year = {2018}, abstract = {Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load.}, language = {en} } @article{MishurovaArtztHaubrichetal.2018, author = {Mishurova, Tatiana and Artzt, Katia and Haubrich, Jan and Requena, Guillermo and Bruno, Giovanni}, title = {New aspects about the search for the most relevant parameters optimizing SLM materials}, series = {Additive manufacturing}, volume = {25}, journal = {Additive manufacturing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-8604}, doi = {10.1016/j.addma.2018.11.023}, pages = {325 -- 334}, year = {2018}, abstract = {While the volumetric energy density is commonly used to qualify a process parameter set, and to quantify its influence on the microstructure and performance of additively manufactured (AM) materials and components, it has been already shown that this description is by no means exhaustive. In this work, new aspects of the optimization of the selective laser melting process are investigated for AM Ti-6Al-4V. We focus on the amount of near-surface residual stress (RS), often blamed for the failure of components, and on the porosity characteristics (amount and spatial distribution). First, using synchrotron x-ray diffraction we show that higher RS in the subsurface region is generated if a lower energy density is used. Second, we show that laser de-focusing and sample positioning inside the build chamber also play an eminent role, and we quantify this influence. In parallel, using X-ray Computed Tomography, we observe that porosity is mainly concentrated in the contour region, except in the case where the laser speed is small. The low values of porosity (less than 1\%) do not influence RS.}, language = {en} } @article{MishurovaArtztHaubrichetal.2019, author = {Mishurova, Tatiana and Artzt, Katia and Haubrich, Jan and Requena, Guillermo and Bruno, Giovanni}, title = {Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V}, series = {Metals}, volume = {9}, journal = {Metals}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2075-4701}, doi = {10.3390/met9020261}, pages = {13}, year = {2019}, abstract = {Subsurface residual stresses (RS) were investigated in Ti-6Al-4V cuboid samples by means of X-ray synchrotron diffraction. The samples were manufactured by laser powder bed fusion (LPBF) applying different processing parameters, not commonly considered in open literature, in order to assess their influence on RS state. While investigating the effect of process parameters used for the calculation of volumetric energy density (such as laser velocity, laser power and hatch distance), we observed that an increase of energy density led to a decrease of RS, although not to the same extent for every parameter variation. Additionally, the effect of support structure, sample roughness and LPBF machine effects potentially coming from Ar flow were studied. We observed no influence of support structure on subsurface RS while the orientation with respect to Ar flow showed to have an impact on RS. We conclude recommending monitoring such parameters to improve part reliability and reproducibility.}, language = {en} } @article{MishurovaCabezaArtztetal.2017, author = {Mishurova, Tatiana and Cabeza, Sandra and Artzt, Katia and Haubrich, Jan and Klaus, Manuela and Genzel, Christoph and Requena, Guillermo and Bruno, Giovanni}, title = {An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V}, series = {Materials}, volume = {10}, journal = {Materials}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma10040348}, pages = {14}, year = {2017}, abstract = {Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM) under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment.}, language = {en} }