@phdthesis{Tella2023, author = {Tella, Timothy Oluwatobi}, title = {Exploring the roles of sediment production by Photozoan and Heterozoan biotas on the evolution of carbonate system geometries through forward modelling}, doi = {10.25932/publishup-58225}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582257}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 123}, year = {2023}, abstract = {The role of biogenic carbonate producers in the evolution of the geometries of carbonate systems has been the subject of numerous research projects. Attempts to classify modern and ancient carbonate systems by their biotic components have led to the discrimination of biogenic carbonate producers broadly into Photozoans, which are characterised by an affinity for warm tropical waters and high dependence on light penetration, and Heterozoans which are generally associated with both cool water environments and nutrient-rich settings with little to no light penetration. These broad categories of carbonate sediment producers have also been recognised to dominate in specific carbonate systems. Photozoans are commonly dominant in flat-topped platforms with steep margins, while Heterozoans generally dominate carbonate ramps. However, comparatively little is known on how these two main groups of carbonate producers interact in the same system and impact depositional geometries responding to changes in environmental conditions such as sea level fluctuation, antecedent slope, sediment transport processes, etc. This thesis presents numerical models to investigate the evolution of Miocene carbonate systems in the Mediterranean from two shallow marine domains: 1) a Miocene flat-topped platform dominated by Photozoans, with a significant component of Hetrozoans in the slope and 2) a Heterozoan distally steepened ramp, with seagrass-influenced (Photozoan) inner ramp. The overarching aim of the three articles comprising this cumulative thesis is to provide a numerical study of the role of Photozoans and Heterozoans in the evolution of carbonate system geometries and how these biotas respond to changes in environmental conditions. This aim was achieved using stratigraphic forward modelling, which provides an approach to quantitatively integrate multi-scale datasets to reconstruct sedimentary processes and products during the evolution of a sedimentary system. In a Photozoan-dominated carbonate system, such as the Miocene Llucmajor platform in Western Mediterranean, stratigraphic forward modelling dovetailed with a robust set of sensitivity tests reveal how the geometry of the carbonate system is determined by the complex interaction of Heterozoan and Photozoan biotas in response to variable conditions of sea level fluctuation, substrate configuration, sediment transport processes and the dominance of Photozoan over Heterozoan production. This study provides an enhanced understanding of the different carbonate systems that are possible under different ecological and hydrodynamic conditions. The research also gives insight into the roles of different biotic associations in the evolution of carbonate geometries through time and space. The results further show that the main driver of platform progradation in a Llucmajor-type system is the lowstand production of Heterozoan sediments, which form the necessary substratum for Photozoan production. In Heterozoan systems, sediment production is mainly characterised by high transport deposits, that are prone to redistribution by waves and gravity, thereby precluding the development of steep margins. However, in the Menorca ramp, the occurrence of sediment trapping by seagrass led to the evolution of distal slope steepening. We investigated, through numerical modelling, how such a seagrass-influenced ramp responds to the frequency and amplitude of sea level changes, variable carbonate production between the euphotic and oligophotic zone, and changes in the configuration of the paleoslope. The study reinforces some previous hypotheses and presents alternative scenarios to the established concepts of high-transport ramp evolution. The results of sensitivity experiments show that steep slopes are favoured in ramps that develop in high-frequency sea level fluctuation with amplitudes between 20 m and 40 m. We also show that ramp profiles are significantly impacted by the paleoslope inclination, such that an optimal antecedent slope of about 0.15 degrees is required for the Menorca distally steepened ramp to develop. The third part presents an experimental case to argue for the existence of a Photozoan sediment threshold required for the development of steep margins in carbonate platforms. This was carried out by developing sensitivity tests on the forward models of the flat-topped (Llucmajor) platform and the distally steepened (Menorca) platform. The results show that models with Photozoan sediment proportion below a threshold of about 40\% are incapable of forming steep slopes. The study also demonstrates that though it is possible to develop steep margins by seagrass sediment trapping, such slopes can only be stabilized by the appropriate sediment fabric and/or microbial binding. In the Photozoan-dominated system, the magnitude of slope steepness depends on the proportion of Photozoan sediments in the system. Therefore, this study presents a novel tool for characterizing carbonate systems based on their biogenic components.}, language = {en} } @misc{SmithZottaBoultonetal.2023, author = {Smith, Taylor and Zotta, Ruxandra-Maria and Boulton, Chris A. and Lenton, Timothy M. and Dorigo, Wouter and Boers, Niklas}, title = {Reliability of resilience estimation based on multi-instrument time series}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1322}, issn = {1866-8372}, doi = {10.25932/publishup-58912}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-589120}, pages = {173 -- 183}, year = {2023}, abstract = {Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process - rather than actual changes in the dynamical properties of the system - is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience.}, language = {en} } @article{SmithZottaBoultonetal.2023, author = {Smith, Taylor and Zotta, Ruxandra-Maria and Boulton, Chris A. and Lenton, Timothy M. and Dorigo, Wouter and Boers, Niklas}, title = {Reliability of resilience estimation based on multi-instrument time series}, series = {Earth System Dynamics}, volume = {14}, journal = {Earth System Dynamics}, publisher = {Copernicus Publications}, address = {G{\"o}ttingen}, issn = {2190-4987}, doi = {10.5194/esd-14-173-2023}, pages = {173 -- 183}, year = {2023}, abstract = {Many widely used observational data sets are comprised of several overlapping instrument records. While data inter-calibration techniques often yield continuous and reliable data for trend analysis, less attention is generally paid to maintaining higher-order statistics such as variance and autocorrelation. A growing body of work uses these metrics to quantify the stability or resilience of a system under study and potentially to anticipate an approaching critical transition in the system. Exploring the degree to which changes in resilience indicators such as the variance or autocorrelation can be attributed to non-stationary characteristics of the measurement process - rather than actual changes in the dynamical properties of the system - is important in this context. In this work we use both synthetic and empirical data to explore how changes in the noise structure of a data set are propagated into the commonly used resilience metrics lag-one autocorrelation and variance. We focus on examples from remotely sensed vegetation indicators such as vegetation optical depth and the normalized difference vegetation index from different satellite sources. We find that time series resulting from mixing signals from sensors with varied uncertainties and covering overlapping time spans can lead to biases in inferred resilience changes. These biases are typically more pronounced when resilience metrics are aggregated (for example, by land-cover type or region), whereas estimates for individual time series remain reliable at reasonable sensor signal-to-noise ratios. Our work provides guidelines for the treatment and aggregation of multi-instrument data in studies of critical transitions and resilience.}, language = {en} } @phdthesis{Olivotos2023, author = {Olivotos, Spyros-Christos}, title = {Reconstructing the Landscape Evolution of South Central Africa by Surface Exposure Dating of Waterfalls}, doi = {10.25932/publishup-60169}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-601699}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2023}, abstract = {The East African Rift System (EARS) is a significant example of active tectonics, which provides opportunities to examine the stages of continental faulting and landscape evolution. The southwest extension of the EARS is one of the most significant examples of active tectonics nowadays, however, seismotectonic research in the area has been scarce, despite the fundamental importance of neotectonics. Our first study area is located between the Northern Province of Zambia and the southeastern Katanga Province of the Democratic Republic of Congo. Lakes Mweru and Mweru Wantipa are part of the southwest extension of the EARS. Fault analysis reveals that, since the Miocene, movements along the active Mweru-Mweru Wantipa Fault System (MMFS) have been largely responsible for the reorganization of the landscape and the drainage patterns across the southwestern branch of the EARS. To investigate the spatial and temporal patterns of fluvial-lacustrine landscape development, we determined in-situ cosmogenic 10Be and 26Al in a total of twenty-six quartzitic bedrock samples that were collected from knickpoints across the Mporokoso Plateau (south of Lake Mweru) and the eastern part of the Kundelungu Plateau (north of Lake Mweru). Samples from the Mporokoso Plateau and close to the MMFS provide evidence of temporary burial. By contrast, surfaces located far from the MMFS appear to have remained uncovered since their initial exposure as they show consistent 10Be and 26Al exposure ages ranging up to ~830 ka. Reconciliation of the observed burial patterns with morphotectonic and stratigraphic analysis reveals the existence of an extensive paleo-lake during the Pleistocene. Through hypsometric analyses of the dated knickpoints, the potential maximum water level of the paleo-lake is constrained to ~1200 m asl (present lake lavel: 917 m asl). High denudation rates (up to ~40 mm ka-1) along the eastern Kundelungu Plateau suggest that footwall uplift, resulting from normal faulting, caused river incision, possibly controlling paleo-lake drainage. The lake level was reduced gradually reaching its current level at ~350 ka. Parallel to the MMFS in the north, the Upemba Fault System (UFS) extends across the southeastern Katanga Province of the Democratic Republic of Congo. This part of our research is focused on the geomorphological behavior of the Kiubo Waterfalls. The waterfalls are the currently active knickpoint of the Lufira River, which flows into the Upemba Depression. Eleven bedrock samples along the Lufira River and its tributary stream, Luvilombo River, were collected. In-situ cosmogenic 10Be and 26Al were used in order to constrain the K constant of the Stream Power Law equation. Constraining the K constant allowed us to calculate the knickpoint retreat rate of the Kiubo Waterfalls at ~0.096 m a-1. Combining the calculated retreat rate of the knickpoint with DNA sequencing from fish populations, we managed to present extrapolation models and estimate the location of the onset of the Kiubo Waterfalls, revealing its connection to the seismicity of the UFS.}, language = {en} } @phdthesis{Reich2023, author = {Reich, Marvin}, title = {Advances in hydrogravimetry}, doi = {10.25932/publishup-60479}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604794}, school = {Universit{\"a}t Potsdam}, pages = {ix, 142}, year = {2023}, abstract = {The interest of the hydrological community in the gravimetric method has steadily increased within the last decade. This is reflected by numerous studies from many different groups with a broad range of approaches and foci. Many of those are traditionally rather hydrology-oriented groups who recognized gravimetry as a potential added value for their hydrological investigations. While this resulted in a variety of interesting and useful findings, contributing to extend the respective knowledge and confirming the methodological potential, on the other hand, many interesting and unresolved questions emerged. This thesis manifests efforts, analyses and solutions carried out in this regard. Addressing and evaluating many of those unresolved questions, the research contributes to advancing hydrogravimetry, the combination of gravimetric and hydrological methods, in showing how gravimeters are a highly useful tool for applied hydrological field research. In the first part of the thesis, traditional setups of stationary terrestrial superconducting gravimeters are addressed. They are commonly installed within a dedicated building, the impermeable structure of which shields the underlying soil from natural exchange of water masses (infiltration, evapotranspiration, groundwater recharge). As gravimeters are most sensitive to mass changes directly beneath the meter, this could impede their suitability for local hydrological process investigations, especially for near-surface water storage changes (WSC). By studying temporal local hydrological dynamics at a dedicated site equipped with traditional hydrological measurement devices, both below and next to the building, the impact of these absent natural dynamics on the gravity observations were quantified. A comprehensive analysis with both a data-based and model-based approach led to the development of an alternative method for dealing with this limitation. Based on determinable parameters, this approach can be transferred to a broad range of measurement sites where gravimeters are deployed in similar structures. Furthermore, the extensive considerations on this topic enabled a more profound understanding of this so called umbrella effect. The second part of the thesis is a pilot study about the field deployment of a superconducting gravimeter. A newly developed field enclosure for this gravimeter was tested in an outdoor installation adjacent to the building used to investigate the umbrella effect. Analyzing and comparing the gravity observations from both indoor and outdoor gravimeters showed performance with respect to noise and stable environmental conditions was equivalent while the sensitivity to near-surface WSC was highly increased for the field deployed instrument. Furthermore it was demonstrated that the latter setup showed gravity changes independent of the depth where mass changes occurred, given their sufficiently wide horizontal extent. As a consequence, the field setup suits monitoring of WSC for both short and longer time periods much better. Based on a coupled data-modeling approach, its gravity time series was successfully used to infer and quantify local water budget components (evapotranspiration, lateral subsurface discharge) on the daily to annual time scale. The third part of the thesis applies data from a gravimeter field deployment for applied hydrological process investigations. To this end, again at the same site, a sprinkling experiment was conducted in a 15 x 15 m area around the gravimeter. A simple hydro-gravimetric model was developed for calculating the gravity response resulting from water redistribution in the subsurface. It was found that, from a theoretical point of view, different subsurface water distribution processes (macro pore flow, preferential flow, wetting front advancement, bypass flow and perched water table rise) lead to a characteristic shape of their resulting gravity response curve. Although by using this approach it was possible to identify a dominating subsurface water distribution process for this site, some clear limitations stood out. Despite the advantage for field installations that gravimetry is a non-invasive and integral method, the problem of non-uniqueness could only be overcome by additional measurements (soil moisture, electric resistivity tomography) within a joint evaluation. Furthermore, the simple hydrological model was efficient for theoretical considerations but lacked the capability to resolve some heterogeneous spatial structures of water distribution up to a needed scale. Nevertheless, this unique setup for plot to small scale hydrological process research underlines the high potential of gravimetery and the benefit of a field deployment. The fourth and last part is dedicated to the evaluation of potential uncertainties arising from the processing of gravity observations. The gravimeter senses all mass variations in an integral way, with the gravitational attraction being directly proportional to the magnitude of the change and inversely proportional to the square of the distance of the change. Consequently, all gravity effects (for example, tides, atmosphere, non-tidal ocean loading, polar motion, global hydrology and local hydrology) are included in an aggregated manner. To isolate the signal components of interest for a particular investigation, all non-desired effects have to be removed from the observations. This process is called reduction. The large-scale effects (tides, atmosphere, non-tidal ocean loading and global hydrology) cannot be measured directly and global model data is used to describe and quantify each effect. Within the reduction process, model errors and uncertainties propagate into the residual, the result of the reduction. The focus of this part of the thesis is quantifying the resulting, propagated uncertainty for each individual correction. Different superconducting gravimeter installations were evaluated with respect to their topography, distance to the ocean and the climate regime. Furthermore, different time periods of aggregated gravity observation data were assessed, ranging from 1 hour up to 12 months. It was found that uncertainties were highest for a frequency of 6 months and smallest for hourly frequencies. Distance to the ocean influences the uncertainty of the non-tidal ocean loading component, while geographical latitude affects uncertainties of the global hydrological component. It is important to highlight that the resulting correction-induced uncertainties in the residual have the potential to mask the signal of interest, depending on the signal magnitude and its frequency. These findings can be used to assess the value of gravity data across a range of applications and geographic settings. In an overarching synthesis all results and findings are discussed with a general focus on their added value for bringing hydrogravimetric field research to a new level. The conceptual and applied methodological benefits for hydrological studies are highlighted. Within an outlook for future setups and study designs, it was once again shown what enormous potential is offered by gravimeters as hydrological field tools.}, language = {en} } @phdthesis{Libon2023, author = {Libon, L{\´e}lia}, title = {Stability of magnesite in the Earth lower mantle: insight from high-pressure and high-temperature experiments}, doi = {10.25932/publishup-60461}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604616}, school = {Universit{\"a}t Potsdam}, pages = {ix, 114, xvi}, year = {2023}, abstract = {Carbonates carried in subducting slabs may play a major role in sourcing and storing carbon in the deep Earth's interior. Current estimates indicate that between 40 to 66 million tons of carbon per year enter subduction zones, but it is uncertain how much of it reaches the lower mantle. It appears that most of this carbon might be extracted from subducting slabs at the mantle wedge and only a limited amount continues deeper and eventually reaches the deep mantle. However, estimations on deeply subducted carbon broadly range from 0.0001 to 52 million tons of carbon per year. This disparity is primarily due to the limited understanding of the survival of carbonate minerals during their transport to deep mantle conditions. Indeed, carbon has very low solubility in mantle silicates, therefore it is expected to be stored primarily in accessory phases such as carbonates. Among those carbonates, magnesite (MgCO3), as a single phase, is the most stable under all mantle conditions. However, experimental investigation on the stability of magnesite in contact with SiO2 at lower mantle conditions suggests that magnesite is stable only along a cold subducted slab geotherm. Furthermore, our understanding of magnesite's stability when interacting with more complex mantle silicate phases remains incomplete. In the first part of this dissertation, laser-heated diamond anvil cells and multi-anvil apparatus experiments were performed to investigate the stability of magnesite in contact with iron-bearing mantle silicates. Sub-solidus reactions, melting, decarbonation and diamond formation were examined from shallow to mid-lower mantle conditions (25 to 68 GPa; 1300 to 2000 K). Multi-anvil experiments at 25 GPa show the formation of carbonate-rich melt, bridgmanite, and stishovite with melting occurring at a temperature corresponding to all geotherms except the coldest one. In situ X-ray diffraction, in laser-heating diamond anvil cells experiments, shows crystallization of bridgmanite and stishovite but no melt phase was detected in situ at high temperatures. To detect decarbonation phases such as diamond, Raman spectroscopy was used. Crystallization of diamonds is observed as a sub-solidus process even at temperatures relevant and lower than the coldest slab geotherm (1350 K at 33 GPa). Data obtained from this work suggest that magnesite is unstable in contact with the surrounding peridotite mantle in the upper-most lower mantle. The presence of magnesite instead induces melting under oxidized conditions and/or foster diamond formation under more reduced conditions, at depths ∼700 km. Consequently, carbonates will be removed from the carbonate-rich slabs at shallow lower mantle conditions, where subducted slabs can stagnate. Therefore, the transport of carbonate to deeper depths will be restricted, supporting the presence of a barrier for carbon subduction at the top of the lower mantle. Moreover, the reduction of magnesite, forming diamonds provides additional evidence that super-deep diamond crystallization is related to the reduction of carbonates or carbonated-rich melt. The second part of this dissertation presents the development of a portable laser-heating system optimized for X-ray emission spectroscopy (XES) or nuclear inelastic scattering (NIS) spectroscopy with signal collection at near 90◦. The laser-heated diamond anvil cell is the only static pressure device that can replicate the pressure and temperatures of the Earth's lower mantle and core. The high temperatures are reached by using high-powered lasers focused on the sample contained between the diamond anvils. Moreover, diamonds' transparency to X-rays enables in situ X-ray spectroscopy measurements that can probe the sample under high-temperature and high-pressure conditions. Therefore, the development of portable laser-heating systems has linked high-pressure and temperature research with high-resolution X-ray spectroscopy techniques to synchrotron beamlines that do not have a dedicated, permanent, laser-heating system. A general description of the system is provided, as well as details on the use of a parabolic mirror as a reflective imaging objective for on-axis laser heating and radiospectrometric temperature measurements with zero attenuation of incoming X-rays. The parabolic mirror improves the accuracy of temperature measurements free from chromatic aberrations in a wide spectral range and its perforation permits in situ X-rays measurement at synchrotron facilities. The parabolic mirror is a well-suited alternative to refractive objectives in laser heating systems, which will facilitate future applications in the use of CO2 lasers.}, language = {en} } @phdthesis{Li2023, author = {Li, Zhen}, title = {Formation of Sub-Permafrost Methane Hydrate Reproduced by Numerical Modeling}, doi = {10.25932/publishup-60330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603302}, school = {Universit{\"a}t Potsdam}, pages = {XII, 109}, year = {2023}, abstract = {Natural gas hydrates are ice-like crystalline compounds containing water cavities that trap natural gas molecules like methane (CH4), which is a potent greenhouse gas with high energy density. The Mallik site at the Mackenzie Delta in the Canadian Arctic contains a large volume of technically recoverable CH4 hydrate beneath the base of the permafrost. Understanding how the sub-permafrost hydrate is distributed can aid in searching for the ideal locations for deploying CH4 production wells to develop the hydrate as a cleaner alternative to crude oil or coal. Globally, atmospheric warming driving permafrost thaw results in sub-permafrost hydrate dissociation, releasing CH4 into the atmosphere to intensify global warming. It is therefore crucial to evaluate the potential risk of hydrate dissociation due to permafrost degradation. To quantitatively predict hydrate distribution and volume in complex sub-permafrost environments, a numerical framework was developed to simulate sub-permafrost hydrate formation by coupling the equilibrium CH4-hydrate formation approach with a fluid flow and transport simulator (TRANSPORTSE). In addition, integrating the equations of state describing ice melting and forming with TRANSPORTSE enabled this framework to simulate the permafrost evolution during the sub-permafrost hydrate formation. A modified sub-permafrost hydrate formation mechanism for the Mallik site is presented in this study. According to this mechanism, the CH4-rich fluids have been vertically transported since the Late Pleistocene from deep overpressurized zones via geologic fault networks to form the observed hydrate deposits in the Kugmallit-Mackenzie Bay Sequences. The established numerical framework was verified by a benchmark of hydrate formation via dissolved methane. Model calibration was performed based on laboratory data measured during a multi-stage hydrate formation experiment undertaken in the LArge scale Reservoir Simulator (LARS). As the temporal and spatial evolution of simulated and observed hydrate saturation matched well, the LARS model was therefore validated. This laboratory-scale model was then upscaled to a field-scale 2D model generated from a seismic transect across the Mallik site. The simulation confirmed the feasibility of the introduced sub-permafrost hydrate formation mechanism by demonstrating consistency with field observations. The 2D model was extended to the first 3D model of the Mallik site by using well-logs and seismic profiles, to investigate the geologic controls on the spatial hydrate distribution. An assessment of this simulation revealed the hydraulic contribution of each geological element, including relevant fault networks and sedimentary sequences. Based on the simulation results, the observed heterogeneous distribution of sub-permafrost hydrate resulted from the combined factors of the source-gas generation rate, subsurface temperature, and the permeability of geologic elements. Analysis of the results revealed that the Mallik permafrost was heated by 0.8-1.3 °C, induced by the global temperature increase of 0.44 °C and accelerated by Arctic amplification from the early 1970s to the mid-2000s. This study presents a numerical framework that can be applied to study the formation of the permafrost-hydrate system from laboratory to field scales, across timescales ranging from hours to millions of years. Overall, these simulations deepen the knowledge about the dominant factors controlling the spatial hydrate distribution in sub-permafrost environments with heterogeneous geologic elements. The framework can support improving the design of hydrate formation experiments and provide valuable contributions to future industrial hydrate exploration and exploitation activities.}, language = {en} } @phdthesis{Stoltnow2023, author = {Stoltnow, Malte}, title = {Magmatic-hydrothermal processes along the porphyry to epithermal transition}, doi = {10.25932/publishup-61140}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611402}, school = {Universit{\"a}t Potsdam}, pages = {xxviii, 132}, year = {2023}, abstract = {Magmatic-hydrothermal systems form a variety of ore deposits at different proximities to upper-crustal hydrous magma chambers, ranging from greisenization in the roof zone of the intrusion, porphyry mineralization at intermediate depths to epithermal vein deposits near the surface. The physical transport processes and chemical precipitation mechanisms vary between deposit types and are often still debated. The majority of magmatic-hydrothermal ore deposits are located along the Pacific Ring of Fire, whose eastern part is characterized by the Mesozoic to Cenozoic orogenic belts of the western North and South Americas, namely the American Cordillera. Major magmatic-hydrothermal ore deposits along the American Cordillera include (i) porphyry Cu(-Mo-Au) deposits (along the western cordilleras of Mexico, the western U.S., Canada, Chile, Peru, and Argentina); (ii) Climax- (and sub-) type Mo deposits (Colorado Mineral Belt and northern New Mexico); and (iii) porphyry and IS-type epithermal Sn(-W-Ag) deposits of the Central Andean Tin Belt (Bolivia, Peru and northern Argentina). The individual studies presented in this thesis primarily focus on the formation of different styles of mineralization located at different proximities to the intrusion in magmatic-hydrothermal systems along the American Cordillera. This includes (i) two individual geochemical studies on the Sweet Home Mine in the Colorado Mineral Belt (potential endmember of peripheral Climax-type mineralization); (ii) one numerical modeling study setup in a generic porphyry Cu-environment; and (iii) a numerical modeling study on the Central Andean Tin Belt-type Pirquitas Mine in NW Argentina. Microthermometric data of fluid inclusions trapped in greisen quartz and fluorite from the Sweet Home Mine (Detroit City Portal) suggest that the early-stage mineralization precipitated from low- to medium-salinity (1.5-11.5 wt.\% equiv. NaCl), CO2-bearing fluids at temperatures between 360 and 415°C and at depths of at least 3.5 km. Stable isotope and noble gas isotope data indicate that greisen formation and base metal mineralization at the Sweet Home Mine was related to fluids of different origins. Early magmatic fluids were the principal source for mantle-derived volatiles (CO2, H2S/SO2, noble gases), which subsequently mixed with significant amounts of heated meteoric water. Mixing of magmatic fluids with meteoric water is constrained by δ2Hw-δ18Ow relationships of fluid inclusions. The deep hydrothermal mineralization at the Sweet Home Mine shows features similar to deep hydrothermal vein mineralization at Climax-type Mo deposits or on their periphery. This suggests that fluid migration and the deposition of ore and gangue minerals in the Sweet Home Mine was triggered by a deep-seated magmatic intrusion. The second study on the Sweet Home Mine presents Re-Os molybdenite ages of 65.86±0.30 Ma from a Mo-mineralized major normal fault, namely the Contact Structure, and multimineral Rb-Sr isochron ages of 26.26±0.38 Ma and 25.3±3.0 Ma from gangue minerals in greisen assemblages. The age data imply that mineralization at the Sweet Home Mine formed in two separate events: Late Cretaceous (Laramide-related) and Oligocene (Rio Grande Rift-related). Thus, the age of Mo mineralization at the Sweet Home Mine clearly predates that of the Oligocene Climax-type deposits elsewhere in the Colorado Mineral Belt. The Re-Os and Rb-Sr ages also constrain the age of the latest deformation along the Contact Structure to between 62.77±0.50 Ma and 26.26±0.38 Ma, which was employed and/or crosscut by Late Cretaceous and Oligocene fluids. Along the Contact Structure Late Cretaceous molybdenite is spatially associated with Oligocene minerals in the same vein system, a feature that precludes molybdenite recrystallization or reprecipitation by Oligocene ore fluids. Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. The numerical modeling study setup in a generic porphyry Cu-environment presents new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. This study investigates the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing, and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation. The epithermal Pirquitas Sn-Ag-Pb-Zn mine in NW Argentina is hosted in a domain of metamorphosed sediments without geological evidence for volcanic activity within a distance of about 10 km from the deposit. However, recent geochemical studies of ore-stage fluid inclusions indicate a significant contribution of magmatic volatiles. This study tested different formation models by applying an existing numerical process model for porphyry-epithermal systems with a magmatic intrusion located either at a distance of about 10 km underneath the nearest active volcano or hidden underneath the deposit. The results show that the migration of the ore fluid over a 10-km distance results in metal precipitation by cooling before the deposit site is reached. In contrast, simulations with a hidden magmatic intrusion beneath the Pirquitas deposit are in line with field observations, which include mineralized hydrothermal breccias in the deposit area.}, language = {en} } @phdthesis{Khawaja2023, author = {Khawaja, Muhammad Asim}, title = {Improving earthquake forecast modeling and testing using the multi-resolution grids}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2023}, language = {en} } @misc{Paetzel2023, type = {Master Thesis}, author = {P{\"a}tzel, Jonas}, title = {Seismic site characterization using broadband and DAS ambient vibration measurements on Mt Etna, Italy}, doi = {10.25932/publishup-61379}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613793}, school = {Universit{\"a}t Potsdam}, pages = {95}, year = {2023}, abstract = {Both horizontal-to-vertical (H/V) spectral ratios and the spatial autocorrelation method (SPAC) have proven to be valuable tools to gain insight into local site effects by ambient noise measurements. Here, the two methods are employed to assess the subsurface velocity structure at the Piano delle Concazze area on Mt Etna. Volcanic tremor records from an array of 26 broadband seismometers is processed and a strong variability of H/V ratios during periods of increased volcanic activity is found. From the spatial distribution of H/V peak frequencies, a geologic structure in the north-east of Piano delle Concazze is imaged which is interpreted as the Ellittico caldera rim. The method is extended to include both velocity data from the broadband stations and distributed acoustic sensing data from a co-located 1.5 km long fibre optic cable. High maximum amplitude values of the resulting ratios along the trajectory of the cable coincide with known faults. The outcome also indicates previously unmapped parts of a fault. The geologic interpretation is in good agreement with inversion results from magnetic survey data. Using the neighborhood algorithm, spatial autocorrelation curves obtained from the modified SPAC are inverted alone and jointly with the H/V peak frequencies for 1D shear wave velocity profiles. The obtained models are largely consistent with published models and were able to validate the results from the fibre optic cable.}, language = {en} } @phdthesis{Kudriavtseva2023, author = {Kudriavtseva, Anna}, title = {Interactions between tectonics, climate, and surface processes in the Kyrgyz Tian Shan}, doi = {10.25932/publishup-60372}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603728}, school = {Universit{\"a}t Potsdam}, pages = {XV, 164}, year = {2023}, abstract = {During the Cenozoic, global cooling and uplift of the Tian Shan, Pamir, and Tibetan plateau modified atmospheric circulation and reduced moisture supply to Central Asia. These changes led to aridification in the region during the Neogene. Afterwards, Quaternary glaciations led to modification of the landscape and runoff. In the Issyk-Kul basin of the Kyrgyz Tian Shan, the sedimentary sequences reflect the development of the adjacent ranges and local climatic conditions. In this work, I reconstruct the late Miocene - early Pleistocene depositional environment, climate, and lake development in the Issyk-Kul basin using facies analyses and stable δ18O and δ13C isotopic records from sedimentary sections dated by magnetostratigraphy and 26Al/10Be isochron burial dating. Also, I present 10Be-derived millennial-scale modern and paleo-denudation rates from across the Kyrgyz Tian Shan and long-term exhumation rates calculated from published thermochronology data. This allows me to examine spatial and temporal changes in surface processes in the Kyrgyz Tian Shan. In the Issyk-Kul basin, the style of fluvial deposition changed at ca. 7 Ma, and aridification in the basin commenced concurrently, as shown by magnetostratigraphy and the δ18O and δ13C data. Lake formation commenced on the southern side of the basin at ca. 5 Ma, followed by a ca. 2 Ma local depositional hiatus. 26Al/10Be isochron burial dating and paleocurrent analysis show that the Kungey range to the north of the basin grew eastward, leading to a change from fluvial-alluvial deposits to proximal alluvial fan conglomerates at 5-4 Ma in the easternmost part of the basin. This transition occurred at 2.6-2.8 Ma on the southern side of the basin, synchronously with the intensification of the Northern Hemisphere glaciation. The paleo-denudation rates from 2.7-2.0 Ma are as low as long-term exhumation rates, and only the millennial-scale denudation rates record an acceleration of denudation. This work concludes that the growth of the ranges to the north of the basin led to creation of the topographic barrier at ca. 7 Ma and a subsequent aridification in the Issyk-Kul basin. Increased subsidence and local tectonically-induced river system reorganization on the southern side of the basin enabled lake formation at ca. 5 Ma, while growth of the Kungey range blocked westward-draining rivers and led to sediment starvation and lake expansion. Denudational response of the Kyrgyz Tian Shan landscape is delayed due to aridity and only substantial cooling during the late Quaternary glacial cycles led to notable acceleration of denudation. Currently, increased glacier reduction and runoff controls a more rapid denudation of the northern slope of the Terskey range compared to other ranges of the Kyrgyz Tian Shan.}, language = {en} } @phdthesis{Rembe2023, author = {Rembe, Johannes}, title = {Hercynian to Eocimmerian evolution of the North Pamir in Central Asia}, doi = {10.25932/publishup-59751}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597510}, school = {Universit{\"a}t Potsdam}, pages = {xxvi, 154, CX}, year = {2023}, abstract = {The North Pamir, part of the India-Asia collision zone, essentially formed during the late Paleozoic to late Triassic-early Jurassic. Coeval to the subduction of the Turkestan ocean—during the Carboniferous Hercynian orogeny in the Tien Shan—a portion of the Paleo-Tethys ocean subducted northward and lead to the formation and obduction of a volcanic arc. This Carboniferous North Pamir arc is of Andean style in the western Darvaz segment and trends towards an intraoceanic arc in the eastern, Oytag segment. A suite of arc-volcanic rocks and intercalated, marine sediments together with intruded voluminous plagiogranites (trondhjemite and tonalite) and granodiorites was uplifted and eroded during the Permian, as demonstrated by widespread sedimentary unconformities. Today it constitutes a major portion of the North Pamir. In this work, the first comprehensive Uranium-Lead (U-Pb) laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) radiometric age data are presented along with geochemical data from the volcanic and plutonic rocks of the North Pamir volcanic arc. Zircon U-Pb data indicate a major intrusive phase between 340 and 320 Ma. The magmatic rocks show an arc-signature, with more primitive signatures in the Oytag segment compared to the Darvaz segment. Volcanic rocks in the Chinese North Pamir were indirectly dated by determining the age of ocean floor alteration. We investigate calcite filled vesicles and show that oxidative sea water and the basaltic host rock are major trace element sources. The age of ocean floor alteration, within a range of 25 Ma, constrains the extrusion age of the volcanic rocks. In the Chinese Pamir, arc-volcanic basalts have been dated to the Visean-Serpukhovian boundary. This relates the North Pamir volcanic arc to coeval units in the Tien Shan. Our findings further question the idea of a continuous Tarim-Tajik continent in the Paleozoic. From the Permian (Guadalupian) on, a progressive sea-retreat led to continental conditions in the northeastern Pamir. Large parts of Central Asia were affected by transcurrent tectonics, while subduction of the Paleo-Tethys went on south of the accreted North Pamir arc, likely forming an accretionary wedge, representing an early stage of the later Karakul-Mazar tectonic unit. Graben systems dissected the Permian carbonate platforms, that formed on top of the uplifted Carboniferous arc in the central and western North Pamir. A continental graben formed in the eastern North Pamir. Zircon U-Pb dating suggest initiation of volcanic activity at ~260 Ma. Extensional tectonics prevailed throughout the Triassic, forming the Hindukush-North Pamir rift system. New geochemistry and zircon U-Pb data tie volcanic rocks, found in the Chinese Pamir, to coeval arc-related plutonic rocks found within the Karakul-Mazar arc-accretionary complex. The sedimentary environment in the continental North Pamir rift evolved from an alluvial plain, lake dominated environment in the Guadalupian to a coarser-clastic, alluvial, braided river dominated in the Triassic. Volcanic activity terminated in the early Jurassic. We conducted Potassium-Argon (K-Ar) fine-fraction dating on the Shala Tala thrust fault, a major structure juxtaposing Paleozoic marine units of lower greenschist to amphibolite facies conditions against continental Permian deposits. Fault slip under epizonal conditions is dated to 204.8 ± 3.7 Ma (2σ), implying Rhaetian nappe emplacement. This pinpoints the Central-North Pamir collision, since the Shala Tala thrust was a back-thrust at that time.}, language = {en} } @misc{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1320}, issn = {1866-8372}, doi = {10.25932/publishup-58882}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588828}, pages = {15}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @article{ZaliReinKruegeretal.2023, author = {Zali, Zahra and Rein, Teresa and Kr{\"u}ger, Frank and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Ocean bottom seismometer (OBS) noise reduction from horizontal and vertical components using harmonic-percussive separation algorithms}, series = {Solid earth}, volume = {14}, journal = {Solid earth}, number = {2}, publisher = {Coepernicus Publ.}, address = {G{\"o}ttingen}, issn = {1869-9529}, doi = {10.5194/se-14-181-2023}, pages = {181 -- 195}, year = {2023}, abstract = {Records from ocean bottom seismometers (OBSs) are highly contaminated by noise, which is much stronger compared to data from most land stations, especially on the horizontal components. As a consequence, the high energy of the oceanic noise at frequencies below 1 Hz considerably complicates the analysis of the teleseismic earthquake signals recorded by OBSs. Previous studies suggested different approaches to remove low-frequency noises from OBS recordings but mainly focused on the vertical component. The records of horizontal components, which are crucial for the application of many methods in passive seismological analysis of body and surface waves, could not be much improved in the teleseismic frequency band. Here we introduce a noise reduction method, which is derived from the harmonic-percussive separation algorithms used in Zali et al. (2021), in order to separate long-lasting narrowband signals from broadband transients in the OBS signal. This leads to significant noise reduction of OBS records on both the vertical and horizontal components and increases the earthquake signal-to-noise ratio (SNR) without distortion of the broadband earthquake waveforms. This is demonstrated through tests with synthetic data. Both SNR and cross-correlation coefficients showed significant improvements for different realistic noise realizations. The application of denoised signals in surface wave analysis and receiver functions is discussed through tests with synthetic and real data.}, language = {en} } @phdthesis{Metzger2023, author = {Metzger, Sabrina}, title = {Neotectonic deformation over space and time as observed by space-based geodesy}, doi = {10.25932/publishup-59922}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599225}, school = {Universit{\"a}t Potsdam}, pages = {V, 217}, year = {2023}, abstract = {Alfred Wegeners ideas on continental drift were doubted for several decades until the discovery of polarization changes at the Atlantic seafloor and the seismic catalogs imaging oceanic subduction underneath the continental crust (Wadati-Benioff Zone). It took another 20 years until plate motion could be directly observed and quantified by using space geodesy. Since then, it is unthinkable to do neotectonic research without the use of satellite-based methods. Thanks to a tremendeous increase of instrumental observations in space and time over the last decades we significantly increased our knowledge on the complexity of the seismic cycle, that is, the interplay of tectonic stress build up and release. Our classical assumption, earthquakes were the only significant phenomena of strain release previously accumulated in a linear fashion, is outdated. We now know that this concept is actually decorated with a wide range of slow and fast processes such as triggered slip, afterslip, post-seismic and visco-elastic relaxation of the lower crust, dynamic pore-pressure changes in the elastic crust, aseismic creep, slow slip events and seismic swarms. On the basis of eleven peer-reviewed papers studies I here present the diversity of crustal deformation processes. Based on time-series analyses of radar imagery and satellited-based positioning data I quantify tectonic surface deformation and use numerical and analytical models and independent geologic and seismologic data to better understand the underlying crustal processes. The main part of my work focuses on the deformation observed in the Pamir, the Hindu Kush and the Tian Shan that together build the highly active continental collision zone between Northwest-India and Eurasia. Centered around the Sarez earthquake that ruptured the center of the Pamir in 2015 I present diverse examples of crustal deformation phenomena. Driver of the deformation is the Indian indenter, bulldozing into the Pamir, compressing the orogen that then collapses westward into the Tajik depression. A second natural observatory of mine to study tectonic deformation is the oceanic subduction zone in Chile that repeatedly hosts large earthquakes of magnitude 8 and more. These are best to study post-seismic relaxation processes and coupling of large earthquake. My findings nicely illustrate how complex fashion and how much the different deformation phenomena are coupled in space and time. My publications contribute to the awareness that the classical concept of the seismic cycle needs to be revised, which, in turn, has a large influence in the classical, probabilistic seismic hazard assessment that primarily relies on statistically solid recurrence times.}, language = {en} } @phdthesis{Pons2023, author = {Pons, Micha{\"e}l}, title = {The Nature of the tectonic shortening in Central Andes}, doi = {10.25932/publishup-60089}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-600892}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2023}, abstract = {The Andean Cordillera is a mountain range located at the western South American margin and is part of the Eastern- Circum-Pacific orogenic Belt. The ~7000 km long mountain range is one of the longest on Earth and hosts the second largest orogenic plateau in the world, the Altiplano-Puna plateau. The Andes are known as a non-collisional subduction-type orogen which developed as a result of the interaction between the subducted oceanic Nazca plate and the South American continental plate. The different Andean segments exhibit along-strike variations of morphotectonic provinces characterized by different elevations, volcanic activity, deformation styles, crustal thickness, shortening magnitude and oceanic plate geometry. Most of the present-day elevation can be explained by crustal shortening in the last ~50 Ma, with the shortening magnitude decreasing from ~300 km in the central (15°S-30°S) segment to less than half that in the southern part (30°S-40°S). Several factors were proposed that might control the magnitude and acceleration of shortening of the Central Andes in the last 15 Ma. One important factor is likely the slab geometry. At 27-33°S, the slab dips horizontally at ~100 km depth due to the subduction of the buoyant Juan Fernandez Ridge, forming the Pampean flat-slab. This horizontal subduction is thought to influence the thermo-mechanical state of the Sierras Pampeanas foreland, for instance, by strengthening the lithosphere and promoting the thick-skinned propagation of deformation to the east, resulting in the uplift of the Sierras Pampeanas basement blocks. The flat-slab has migrated southwards from the Altiplano latitude at ~30 Ma to its present-day position and the processes and consequences associated to its passage on the contemporaneous acceleration of the shortening rate in Central Andes remain unclear. Although the passage of the flat-slab could offer an explanation to the acceleration of the shortening, the timing does not explain the two pulses of shortening at about 15 Ma and 4 Ma that are suggested from geological observations. I hypothesize that deformation in the Central Andes is controlled by a complex interaction between the subduction dynamics of the Nazca plate and the dynamic strengthening and weakening of the South American plate due to several upper plate processes. To test this hypothesis, a detailed investigation into the role of the flat-slab, the structural inheritance of the continental plate, and the subduction dynamics in the Andes is needed. Therefore, I have built two classes of numerical thermo-mechanical models: (i) The first class of models are a series of generic E-W-oriented high-resolution 2D subduction models thatinclude flat subduction in order to investigate the role of the subduction dynamics on the temporal variability of the shortening rate in the Central Andes at Altiplano latitudes (~21°S). The shortening rate from the models was then validated with the observed tectonic shortening rate in the Central Andes. (ii) The second class of models are a series of 3D data-driven models of the present-day Pampean flat-slab configuration and the Sierras Pampeanas (26-42°S). The models aim to investigate the relative contribution of the present-day flat subduction and inherited structures in the continental lithosphere on the strain localization. Both model classes were built using the advanced finite element geodynamic code ASPECT. The first main finding of this work is to suggest that the temporal variability of shortening in the Central Andes is primarily controlled by the subduction dynamics of the Nazca plate while it penetrates into the mantle transition zone. These dynamics depends on the westward velocity of the South American plate that provides the main crustal shortening force to the Andes and forces the trench to retreat. When the subducting plate reaches the lower mantle, it buckles on it-self until the forced trench retreat causes the slab to steepen in the upper mantle in contrast with the classical slab-anchoring model. The steepening of the slab hinders the trench causing it to resist the advancing South American plate, resulting in the pulsatile shortening. This buckling and steepening subduction regime could have been initiated because of the overall decrease in the westwards velocity of the South American plate. In addition, the passage of the flat-slab is required to promote the shortening of the continental plate because flat subduction scrapes the mantle lithosphere, thus weakening the continental plate. This process contributes to the efficient shortening when the trench is hindered, followed by mantle lithosphere delamination at ~20 Ma. Finally, the underthrusting of the Brazilian cratonic shield beneath the orogen occurs at ~11 Ma due to the mechanical weakening of the thick sediments covered the shield margin, and due to the decreasing resistance of the weakened lithosphere of the orogen. The second main finding of this work is to suggest that the cold flat-slab strengthens the overriding continental lithosphere and prevents strain localization. Therefore, the deformation is transmitted to the eastern front of the flat-slab segment by the shear stress operating at the subduction interface, thus the flat-slab acts like an indenter that "bulldozes" the mantle-keel of the continental lithosphere. The offset in the propagation of deformation to the east between the flat and steeper slab segments in the south causes the formation of a transpressive dextral shear zone. Here, inherited faults of past tectonic events are reactivated and further localize the deformation in an en-echelon strike-slip shear zone, through a mechanism that I refer to as "flat-slab conveyor". Specifically, the shallowing of the flat-slab causes the lateral deformation, which explains the timing of multiple geological events preceding the arrival of the flat-slab at 33°S. These include the onset of the compression and of the transition between thin to thick-skinned deformation styles resulting from the crustal contraction of the crust in the Sierras Pampeanas some 10 and 6 Myr before the Juan Fernandez Ridge collision at that latitude, respectively.}, language = {en} } @phdthesis{Ribacki2023, author = {Ribacki, Enrico}, title = {Intra-granitic pegmatites of the Las Chacras-Potrerillos batholith, Argentina}, school = {Universit{\"a}t Potsdam}, pages = {XVIII, 183}, year = {2023}, language = {en} } @phdthesis{JimenezAlvaro2023, author = {Jim{\´e}nez {\´A}lvaro, Eliana}, title = {An{\´a}lisis neotect{\´o}nico y lito-tefroestratigr{\´a}fico de los grandes movimientos en masa asociados al fallamiento activo de la cuenca intermontana Quito-Guayllabamba, Ecuador}, doi = {10.25932/publishup-62220}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-622209}, school = {Universit{\"a}t Potsdam}, pages = {195}, year = {2023}, abstract = {Within the Quito-Guayllabamba intermontane basin of Ecuador, five unusually large colluvial deposits of ancient landslides have been identified and analyzed in this study. The voluminous rotational MM-5 Guayllabamba landslide is the largest one, with a volume of 1183 million m3. The mega debris-avalanches MM-1 Conocoto, MM-3 Oyacoto, and MM-4 San Francisco were originally triggered by an initial rupture that was associated with a rotational landslide, the corresponding deposits have volumes between 399 to 317 million m3. Finally, the deposit with the smallest volume, the MM-2 Bat{\´a}n rotational landslide and debris fall, has a volume of 8,7 million m3. In this thesis, a detailed study of these large mass movements was carried out using neotectonic and litho-tephrostratigraphic methods to understand the geological and geomorphological boundary conditions that might have been relevant for triggering such mass movements. The neotectonic part of the study was based on the qualitative and quantitative geomorphic analysis of these large mass-movement deposits through the structural characterization of anticlines located east of the Quito sub-basin and their collapsed flanks that constitute the break-off areas. This part of the analysis was furthermore supported by the application of different morphometric indices to reveal tectonically forced landscape evolution processes that may have aided mass-movement generation. The litho-tephrostratigraphic part of the study was based on the analysis of petrographic, geochemical, and geochronological characteristics of soil horizons and intercalated volcanic ashes with the aim to constrain the timing of individual mass-movement events and their potential correlation. The results were integrated into chronostratigraphic schemes using break-off surfaces, cross-cutting and superposition relationships of landslide deposits and subsequently deposited strata to understand the mass movements in the tectonic and temporal context of the intermontane basin setting, as well as to identify the triggering mechanisms for each event. The MM-5 Guayllabamba mass movement is the result of the collapse of the southwestern slope of the Mojanda volcano and was triggered by the interaction of geologic and morphologic conditions approximately 0,81 Ma. The first debris-avalanche episode of the MM-3 Oyacoto and MM-4 San Francisco mass movements could be related to both geological and morphological conditions, given the highly fractured rocks and uplift of the Bellavista-Catequilla anticline that was subsequently incised at the foot of the slope by fluvial erosion. This first episode of collapse most likely occurred around 0,8 Ma. The MM-2 Bat{\´a}n mass movement was possibly also facilitated by a combination of geological and morphological conditions, most likely associated with a reduction in the lithostatic stresses affecting the Chiche and Mach{\´a}ngara formations and an increase of shear stresses during lateral fluvial scouring processes at the flanks of the source areas. This points to a linked process between river erosion and uplift processes associated with the evolution of the El Bat{\´a}n-La Bota anticline that could have occurred between 0,5 and 0,25 Ma. The voluminous MM-1 Conocoto debris avalanche, as well as the second debris avalanche episode that generated the MM-3 Oyacoto and MM-4 San Francisco mass movements, were caused by the gravitational collapse of the Mojanda and Cangahua formations that are characterized by the intercalation of volcanic ashes. The failure of the eastern flank of the anticlines probably was associated with increased available humidity related to regional Holocene climatic variations. The results of paleosol chronology combined with regional chronostratigraphic and paleoclimate data suggests that these debris avalanches were triggered between 5 and 4 ka. Active tectonics has shaped the morphological features of the Quito-Guayllabamba intermontane basin. The triggering of mass movements in this environment is associated with failure of Pleistocene lithologies (lake sediments, alluvial and volcanic deposits) subjected to ongoing deformation processes, seismic activity, and superposed episodes of climate variability. The Metropolitan District of Quito is an integral part of this complex environment and the geological, climatic, and topographic conditions that continue to influence the urban geographic space within this intermontane basin. The city of Quito comprises the area with the largest urban consolidation including the sub-basins of Quito and San Antonio, with a population of 2,872 million inhabitants, reflecting the importance of studying the inherent geological and climatic hazards that this region is confronted with.}, language = {es} } @phdthesis{Kooten2023, author = {Kooten, Willemijn Sarah Maria Theresia van}, title = {Structural inheritance of the Salta Rift basin and its control on exhumation patterns of the Eastern Cordillera between 23 and 24°S}, doi = {10.25932/publishup-61798}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617983}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 188}, year = {2023}, abstract = {The deformation style of mountain belts is greatly influenced by the upper plate architecture created during preceding deformation phases. The Mesozoic Salta Rift extensional phase has created a dominant structural and lithological framework that controls Cenozoic deformation and exhumation patterns in the Central Andes. Studying the nature of these pre-existing anisotropies is a key to understanding the spatiotemporal distribution of exhumation and its controlling factors. The Eastern Cordillera in particular, has a structural grain that is in part controlled by Salta Rift structures and their orientation relative to Andean shortening. As a result, there are areas in which Andean deformation prevails and areas where the influence of the Salta Rift is the main control on deformation patterns. Between 23 and 24°S, lithological and structural heterogeneities imposed by the Lomas de Olmedo sub-basin (Salta Rift basin) affect the development of the Eastern Cordillera fold-and-thrust belt. The inverted northern margin of the sub-basin now forms the southern boundary of the intermontane Cianzo basin. The former western margin of the sub-basin is located at the confluence of the Subandean Zone, the Santa Barbara System and the Eastern Cordillera. Here, the Salta Rift basin architecture is responsible for the distribution of these morphotectonic provinces. In this study we use a multi-method approach consisting of low-temperature (U-Th-Sm)/He and apatite fission track thermochronology, detrital geochronology, structural and sedimentological analyses to investigate the Mesozoic structural inheritance of the Lomas de Olmedo sub-basin and Cenozoic exhumation patterns. Characterization of the extension-related Tacur{\´u} Group as an intermediate succession between Paleozoic basement and the syn-rift infill of the Lomas de Olmedo sub-basin reveals a Jurassic maximum depositional age. Zircon (U-Th-Sm)/He cooling ages record a pre-Cretaceous onset of exhumation for the rift shoulders in the northern part of the sub-basin, whereas the western shoulder shows a more recent onset (140-115 Ma). Variations in the sedimentary thickness of syn- and post-rift strata document the evolution of accommodation space in the sub-basin. While the thickness of syn-rift strata increases rapidly toward the northern basin margin, the post-rift strata thickness decreases toward the margin and forms a condensed section on the rift shoulder. Inversion of Salta Rift structures commenced between the late Oligocene and Miocene (24-15 Ma) in the ranges surrounding the Cianzo basin. The eastern and western limbs of the Cianzo syncline, located in the hanging wall of the basin-bounding Hornocal fault, show diachronous exhumation. At the same time, western fault blocks of Tilcara Range, south of the Cianzo basin, began exhuming in the late Oligocene to early Miocene (26-16 Ma). Eastward propagation to the frontal thrust and to the Paleozoic strata east of the Tilcara Range occurred in the middle Miocene (22-10 Ma) and the late Miocene-early Pliocene (10-4 Ma), respectively.}, language = {en} } @phdthesis{LauerDuenkelberg2023, author = {Lauer-D{\"u}nkelberg, Gregor}, title = {Extensional deformation and landscape evolution of the Central Andean Plateau}, doi = {10.25932/publishup-61759}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617593}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 195}, year = {2023}, abstract = {Mountain ranges can fundamentally influence the physical and and chemical processes that shape Earths' surface. With elevations of up to several kilometers they create climatic enclaves by interacting with atmospheric circulation and hydrologic systems, thus leading to a specific distribution of flora and fauna. As a result, the interiors of many Cenozoic mountain ranges are characterized by an arid climate, internally drained and sediment-filled basins, as well as unique ecosystems that are isolated from the adjacent humid, low-elevation regions along their flanks and forelands. These high-altitude interiors of orogens are often characterized by low relief and coalesced sedimentary basins, commonly referred to as plateaus, tectono-geomorphic entities that result from the complex interactions between mantle-driven geological and tectonic conditions and superposed atmospheric and hydrological processes. The efficiency of these processes and the fate of orogenic plateaus is therefore closely tied to the balance of constructive and destructive processes - tectonic uplift and erosion, respectively. In numerous geological studies it has been shown that mountain ranges are delicate systems that can be obliterated by an imbalance of these underlying forces. As such, Cenozoic mountain ranges might not persist on long geological timescales and will be destroyed by erosion or tectonic collapse. Advancing headward erosion of river systems that drain the flanks of the orogen may ultimately sever the internal drainage conditions and the maintenance of storage of sediments within the plateau, leading to destruction of plateau morphology and connectivity with the foreland. Orogenic collapse may be associated with the changeover from a compressional stress field with regional shortening and topographic growth, to a tensional stress field with regional extensional deformation and ensuing incision of the plateau. While the latter case is well-expressed by active extensional faults in the interior parts of the Tibetan Plateau and the Himalaya, for example, the former has been attributed to have breached the internally drained areas of the high-elevation sectors of the Iranian Plateau. In the case of the Andes of South America and their internally drained Altiplano-Puna Plateau, signs of both processes have been previously described. However, in the orogenic collapse scenario the nature of the extensional structures had been primarily investigated in the northern and southern terminations of the plateau; in some cases, the extensional faults were even regarded to be inactive. After a shallow earthquake in 2020 within the Eastern Cordillera of Argentina that was associated with extensional deformation, the state of active deformation and the character of the stress field in the central parts of the plateau received renewed interest to explain a series of extensional structures in the northernmost sectors of the plateau in north-western Argentina. This study addresses (1) the issue of tectonic orogenic collapse of the Andes and the destruction of plateau morphology by studying the fill and erosion history of the central eastern Andean Plateau using sedimentological and geochronological data and (2) the kinematics, timing and magnitude of extensional structures that form well-expressed fault scarps in sediments of the regional San Juan del Oro surface, which is an integral part of the Andean Plateau and adjacent morphotectonic provinces to the east. Importantly, sediment properties and depositional ages document that the San Juan del Oro Surface was not part of the internally-drained Andean Plateau, but rather associated with a foreland-directed drainage system, which was modified by the Andean orogeny and that became successively incorporated into the orogen by the eastward-migration of the Andean deformation front during late Miocene - Pliocene time. Structural and geomorphic observations within the plateau indicate that extensional processes must have been repeatedly active between the late Miocene and Holocene supporting the notion of plateau-wide extensional processes, potentially associated with Mw ~ 7 earthquakes. The close relationship between extensional joints and fault orientations underscores that 3 was oriented horizontally in NW-SE direction and 1 was vertical. This unambiguously documents that the observed deformation is related to gravitational forces that drive the orogenic collapse of the plateau. Applied geochronological analyses suggest that normal faulting in the northern Puna was active at about 3 Ma, based on paired cosmogenic nuclide dating of sediment fill units. Possibly due to regional normal faulting the drainage system within the plateau was modified, promoting fluvial incision.}, language = {en} } @misc{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1341}, issn = {1866-8372}, doi = {10.25932/publishup-60487}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-604874}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @phdthesis{Zuhr2023, author = {Zuhr, Alexandra}, title = {Proxy signal formation in palaeoclimate archives}, doi = {10.25932/publishup-58286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-582864}, school = {Universit{\"a}t Potsdam}, pages = {xx, 167}, year = {2023}, abstract = {Throughout the last ~3 million years, the Earth's climate system was characterised by cycles of glacial and interglacial periods. The current warm period, the Holocene, is comparably stable and stands out from this long-term cyclicality. However, since the industrial revolution, the climate has been increasingly affected by a human-induced increase in greenhouse gas concentrations. While instrumental observations are used to describe changes over the past ~200 years, indirect observations via proxy data are the main source of information beyond this instrumental era. These data are indicators of past climatic conditions, stored in palaeoclimate archives around the Earth. The proxy signal is affected by processes independent of the prevailing climatic conditions. In particular, for sedimentary archives such as marine sediments and polar ice sheets, material may be redistributed during or after the initial deposition and subsequent formation of the archive. This leads to noise in the records challenging reliable reconstructions on local or short time scales. This dissertation characterises the initial deposition of the climatic signal and quantifies the resulting archive-internal heterogeneity and its influence on the observed proxy signal to improve the representativity and interpretation of climate reconstructions from marine sediments and ice cores. To this end, the horizontal and vertical variation in radiocarbon content of a box-core from the South China Sea is investigated. The three-dimensional resolution is used to quantify the true uncertainty in radiocarbon age estimates from planktonic foraminifera with an extensive sampling scheme, including different sample volumes and replicated measurements of batches of small and large numbers of specimen. An assessment on the variability stemming from sediment mixing by benthic organisms reveals strong internal heterogeneity. Hence, sediment mixing leads to substantial time uncertainty of proxy-based reconstructions with error terms two to five times larger than previously assumed. A second three-dimensional analysis of the upper snowpack provides insights into the heterogeneous signal deposition and imprint in snow and firn. A new study design which combines a structure-from-motion photogrammetry approach with two-dimensional isotopic data is performed at a study site in the accumulation zone of the Greenland Ice Sheet. The photogrammetry method reveals an intermittent character of snowfall, a layer-wise snow deposition with substantial contributions by wind-driven erosion and redistribution to the final spatially variable accumulation and illustrated the evolution of stratigraphic noise at the surface. The isotopic data show the preservation of stratigraphic noise within the upper firn column, leading to a spatially variable climate signal imprint and heterogeneous layer thicknesses. Additional post-depositional modifications due to snow-air exchange are also investigated, but without a conclusive quantification of the contribution to the final isotopic signature. Finally, this characterisation and quantification of the complex signal formation in marine sediments and polar ice contributes to a better understanding of the signal content in proxy data which is needed to assess the natural climate variability during the Holocene.}, language = {en} } @phdthesis{Mester2023, author = {Mester, Benedikt}, title = {Modeling flood-induced human displacement risk under global change}, doi = {10.25932/publishup-60929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609293}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 143}, year = {2023}, abstract = {Extreme flooding displaces an average of 12 million people every year. Marginalized populations in low-income countries are in particular at high risk, but also industrialized countries are susceptible to displacement and its inherent societal impacts. The risk of being displaced results from a complex interaction of flood hazard, population exposed in the floodplains, and socio-economic vulnerability. Ongoing global warming changes the intensity, frequency, and duration of flood hazards, undermining existing protection measures. Meanwhile, settlements in attractive yet hazardous flood-prone areas have led to a higher degree of population exposure. Finally, the vulnerability to displacement is altered by demographic and social change, shifting economic power, urbanization, and technological development. These risk components have been investigated intensively in the context of loss of life and economic damage, however, only little is known about the risk of displacement under global change. This thesis aims to improve our understanding of flood-induced displacement risk under global climate change and socio-economic change. This objective is tackled by addressing the following three research questions. First, by focusing on the choice of input data, how well can a global flood modeling chain reproduce flood hazards of historic events that lead to displacement? Second, what are the socio-economic characteristics that shape the vulnerability to displacement? Finally, to what degree has climate change potentially contributed to recent flood-induced displacement events? To answer the first question, a global flood modeling chain is evaluated by comparing simulated flood extent with satellite-derived inundation information for eight major flood events. A focus is set on the sensitivity to different combinations of the underlying climate reanalysis datasets and global hydrological models which serve as an input for the global hydraulic model. An evaluation scheme of performance scores shows that simulated flood extent is mostly overestimated without the consideration of flood protection and only for a few events dependent on the choice of global hydrological models. Results are more sensitive to the underlying climate forcing, with two datasets differing substantially from a third one. In contrast, the incorporation of flood protection standards results in an underestimation of flood extent, pointing to potential deficiencies in the protection level estimates or the flood frequency distribution within the modeling chain. Following the analysis of a physical flood hazard model, the socio-economic drivers of vulnerability to displacement are investigated in the next step. For this purpose, a satellite- based, global collection of flood footprints is linked with two disaster inventories to match societal impacts with the corresponding flood hazard. For each event the number of affected population, assets, and critical infrastructure, as well as socio-economic indicators are computed. The resulting datasets are made publicly available and contain 335 displacement events and 695 mortality/damage events. Based on this new data product, event-specific displacement vulnerabilities are determined and multiple (national) dependencies with the socio-economic predictors are derived. The results suggest that economic prosperity only partially shapes vulnerability to displacement; urbanization, infant mortality rate, the share of elderly, population density and critical infrastructure exhibit a stronger functional relationship, suggesting that higher levels of development are generally associated with lower vulnerability. Besides examining the contextual drivers of vulnerability, the role of climate change in the context of human displacement is also being explored. An impact attribution approach is applied on the example of Cyclone Idai and associated extreme coastal flooding in Mozambique. A combination of coastal flood modeling and satellite imagery is used to construct factual and counterfactual flood events. This storyline-type attribution method allows investigating the isolated or combined effects of sea level rise and the intensification of cyclone wind speeds on coastal flooding. The results suggest that displacement risk has increased by 3.1 to 3.5\% due to the total effects of climate change on coastal flooding, with the effects of increasing wind speed being the dominant factor. In conclusion, this thesis highlights the potentials and challenges of modeling flood- induced displacement risk. While this work explores the sensitivity of global flood modeling to the choice of input data, new questions arise on how to effectively improve the reproduction of flood return periods and the representation of protection levels. It is also demonstrated that disentangling displacement vulnerabilities is feasible, with the results providing useful information for risk assessments, effective humanitarian aid, and disaster relief. The impact attribution study is a first step in assessing the effects of global warming on displacement risk, leading to new research challenges, e.g., coupling fluvial and coastal flood models or the attribution of other hazard types and displacement events. This thesis is one of the first to address flood-induced displacement risk from a global perspective. The findings motivate for further development of the global flood modeling chain to improve our understanding of displacement vulnerability and the effects of global warming.}, language = {en} } @phdthesis{QuirogaCarrasco2023, author = {Quiroga Carrasco, Rodrigo Adolfo}, title = {Cenozoic style of deformation and spatiotemporal variations of the tectonic stress field in the southern central Andes}, doi = {10.25932/publishup-61038}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610387}, school = {Universit{\"a}t Potsdam}, pages = {228}, year = {2023}, abstract = {The central Andean plateau is the second largest orogenic plateau in the world and has formed in a non-collisional orogenic system. It extends from southern Peru (15°S) to northern Argentina and Chile (27°30'S) and reaches an average elevation of 4,000 m.a.s.l. South of 24°S, the Andean plateau is called Puna and it is characterized by a system of endorheic basins with thick sequences where clastic and evaporitic strata are preserved. Between 26° and 27°30'S, the Puna terminates in a structurally complex zone which coincides with the transition from a normal subduction zone to a flat subduction ("flat slab") zone, which extends to 33°S. This transition zone also coincides with important morphostructural provinces that, from west to east, correspond to i) the Cordillera Frontal, where the Maricunga Belt is located; ii) the Famatina system; and iv) the north-western, thick-skinned Sierras Pampeanas. Various structural, sedimentological, thermochronological and geochronological studies in this region have documented a complex history of deformation and uplift during successive Cenozoic deformation events. These processes caused the increase of crustal thickness, as well as episodes of diachronic uplift, which attained its present configuration during the late Miocene. Subsequently, the plateau experienced a change in deformation style from contraction to extension and transtension documented by ubiquitous normal faults, earthquakes, and magmatic rocks. However, at the southern edge of the Puna plateau and in the transition to the other morphostructural provinces, the variation of deformation processes and the changes in the tectonic stress field are not fully understood. This location is thus ideally located to evaluate how the tectonic stress field may have evolved and how it may have been affected by the presence/absence of an orogenic plateau, as well as by the existence of inherited structural anisotropies within the different tectonic provinces. This thesis investigates the relationship between shallow crustal deformation and the spatiotemporal evolution of the tectonic stress field in the southern sector of the Andean plateau, during pre-, syn- and post-uplift periods of this plateau. To carry out this research, multiple methodological approaches were chosen that include (U-Pb) radiometric dating; the analysis of mesoscopic faults to obtain stress tensors and the orientation of the principal stress axes; the determination of magnetic susceptibility anisotropy in sedimentary and volcanoclastic rocks to identify shortening directions or directions of sedimentary transport; kinematic modeling to infer deep crustal structures and deformation; and finally, a morphometric analysis to identify geomorphological indicators associated with Quaternary tectonism. Combining the obtained results with data from published studies, this study reveals a complex history of the tectonic stress field that has been characterized by changes in orientation and by vertical permutations of the principal stress axes during each deformation regime over the last ~24 Ma. The evolution of the tectonic stress field can be linked with three orogenic phases at this latitude of the Andean orogen: (1) a first phase with an E-W-oriented compression documented between Eocene and middle Miocene, which coincided with Andean crustal thickening, lateral growth, and topographic uplift; (2) a second phase characterized by a compressive transpressional stress regime, starting at ~11 Ma and ~5 Ma on the western and eastern edge of the Puna plateau, respectively, and a compressive stress regime in the Famatina system and the Sierras Pampeanas, which is interpreted to reflect a transition between Neogene orogenic construction and the maximum accumulation of deformation and topographic uplift of the Puna plateau; and (3) a third phase, when the tectonic regime caused a changeover to a tensional stress state that followed crustal thickening and the maximum uplift of the plateau between ~5-4 Ma; this is especially well expressed in the Puna, in its western border area with the Maricunga-Valle Ancho Belt, and along its eastern border in the transition with the Sierras Pampeanas. The results of the study thus document that the plateau rim experienced a shift from a compressional to a transtensional regime, which differs from the tensional state of stress of the Andean Plateau in the northern sectors for the same period. Similar stress changes have been documented during the construction of the Tibetan plateau, where a predominantly compressional stress regime changed to a transtensional regime, but which was superseded by a purely tensional regime, between 14 and 4 Ma.}, language = {es} } @phdthesis{Manu2023, author = {Manu, Evans}, title = {Hydrogeochemical characterization of water resources in the Pra Basin (Ghana) for quality assessment and water management}, doi = {10.25932/publishup-62806}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628062}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 106}, year = {2023}, abstract = {Watershed management requires an understanding of key hydrochemical processes. The Pra Basin is one of the five major river basins in Ghana with a population of over 4.2 million people. Currently, water resources management faces challenges due to surface water pollution caused by the unregulated release of untreated household and industrial waste into aquatic ecosystems and illegal mining activities. This has increased the need for groundwater as the most reliable water supply. Our understanding of groundwater recharge mechanisms and chemical evolution in the basin has been inadequate, making effective management difficult. Therefore, the main objective of this work is to gain insight into the processes that determine the hydrogeochemical evolution of groundwater quality in the Pra Basin. The combined use of stable isotope, hydrochemistry, and water level data provides the basis for conceptualizing the chemical evolution of groundwater in the Pra Basin. For this purpose, the origin and evaporation rates of water infiltrating into the unsaturated zone were evaluated. In addition, Chloride Mass Balance (CMB) and Water Table Fluctuations (WTF) were considered to quantify groundwater recharge for the basin. Indices such as water quality index (WQI), sodium adsorption ratio (SAR), Wilcox diagram, and salinity (USSL) were used in this study to determine the quality of the resource for use as drinking water and for irrigation purposes. Due to the heterogeneity of the hydrochemical data, the statistical techniques of hierarchical cluster and factor analysis were applied to subdivide the data according to their spatial correlation. A conceptual hydrogeochemical model was developed and subsequently validated by applying combinatorial inverse and reaction pathway-based geochemical models to determine plausible mineral assemblages that control the chemical composition of the groundwater. The interactions between water and rock determine the groundwater quality in the Pra Basin. The results underline that the groundwater is of good quality and can be used for drinking water and irrigation purposes. It was demonstrated that there is a large groundwater potential to meet the entire Pra Basin's current and future water demands. The main recharge area was identified as the northern zone, while the southern zone is the discharge area. The predominant influence of weathering of silicate minerals plays a key role in the chemical evolution of the groundwater. The work presented here provides fundamental insights into the hydrochemistry of the Pra Basin and provides data important to water managers for informed decision-making in planning and allocating water resources for various purposes. A novel inverse modelling approach was used in this study to identify different mineral compositions that determine the chemical evolution of groundwater in the Pra Basin. This modelling technique has the potential to simulate the composition of groundwater at the basin scale with large hydrochemical heterogeneity, using average water composition to represent established spatial groupings of water chemistry.}, language = {en} } @phdthesis{ErbelloDoelesso2023, author = {Erbello Doelesso, Asfaw}, title = {Cenozoic magma-assisted continental rifting and crustal block rotations in an extensional overlap zone between two rift segments, Southwest Ethiopia, East Africa}, doi = {10.25932/publishup-61096}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610968}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 167}, year = {2023}, abstract = {Continental rifts are key geodynamic regions where the complex interplay of magmatism and faulting activity can be studied to understand the driving forces of extension and the formation of new divergent plate boundaries. Well-preserved rift morphology can provide a wealth of information on the growth, interaction, and linkage of normal-fault systems through time. If rift basins are preserved over longer geologic time periods, sedimentary archives generated during extensional processes may mirror tectonic and climatic influences on erosional and sedimentary processes that have varied over time. Rift basins are furthermore strategic areas for hydrocarbon and geothermal energy exploration, and they play a central role in species dispersal and evolution as well as providing or inhibiting hydrologic connectivity along basins at emerging plate boundaries. The Cenozoic East African rift system (EARS) is one of the most important continental extension zones, reflecting a range of evolutionary stages from an early rift stage with isolated basins in Malawi to an advanced stage of continental extension in southern Afar. Consequently, the EARS is an ideal natural laboratory that lends itself to the study of different stages in the breakup of a continent. The volcanically and seismically active eastern branch of the EARS is characterized by multiple, laterally offset tectonic and magmatic segments where adjacent extensional basins facilitate crustal extension either across a broad deformation zone or via major transfer faulting. The Broadly Rifted Zone (BRZ) in southern Ethiopia is an integral part of the eastern branch of the EARS; in this region, rift segments of the southern Ethiopian Rift (sMER) and northern Kenyan Rift (nKR) propagate in opposite directions in a region with one of the earliest manifestations of volcanism and extensional tectonism in East Africa. The basin margins of the Chew-Bahir Basin and the Gofa Province, characterized by a semi-arid climate and largely uniform lithology, provide ideal conditions for studying the tectonic and geomorphologic features of this complex kinematic transfer zone, but more importantly, this area is suitable for characterizing and quantifying the overlap between the propagating structures of the sMER and nKR and the resulting deformation patterns of the BRZ transfer zones. In this study, I have combined data from thermochronology, thermal modeling, morphometry, paleomagnetic analysis, geochronology, and geomorphological field observations with information from published studies to reconstruct the spatiotemporal relationship between volcanism and fault activity in the BRZ and quantify the deformation patterns of the overlapping rift segments. I present the following results: (1) new thermochronological data from the en-{\´e}chelon basin margins and footwall blocks of the rift flanks and morphometric results verified in the field to link different phases of magmatism and faulting during extension and infer geomorphological landscape features related to the current tectonic interaction between the nKR and the sMER; (2) temporally constrained paleomagnetic data from the BRZ overlap zone between the Ethiopian and Kenyan rifts to quantitatively determine block rotation between the two segments. Combining the collected data, time-temperature histories of thermal modeling results from representative samples show well-defined deformation phases between 25-20 Ma, 15-9Ma, and ~5 Ma to the present. Each deformation phase is characterized by the onset of rapid cooling (>2°C/Ma) of the crust associated with uplift or exhumation of the rift shoulder. After an initial, spatially very diffuse phase of extension, the rift has gradually evolved into a system of connected structures formed in an increasingly focused rift zone during the last 5 Ma. Regarding the morphometric analysis of the rift structures, it can be shown that normalized slope indices of the river courses, spatial arrangement of knickpoints in the river longitudinal profiles of the footwall blocks, local relief values, and the average maximum values of the slope of the river profiles indicate a gradual increase in the extension rate from north (Sawula basin: mature) to south (Chew Bahir: young). The complexity of the structural evolution of the BRZ overlap zone between nKR and sMER is further emphasized by the documentation of crustal blocks around a vertical axis. A comparison of the mean directions obtained for the Eo-Oligocene (Ds=352.6°, Is=-17.0°, N=18, α95=5.5°) and Miocene (Ds=2.9°, Is=0.9°, N=9, α95=12.4°) volcanics relative to the pole for stable South Africa and with respect to the corresponding ages of the analyzed units record a significant counterclockwise rotation of ~11.1°± 6.4° and insignificant CCW rotation of ~3.2° ± 11.5°, respectively.}, language = {en} } @phdthesis{Freisleben2023, author = {Freisleben, Roland}, title = {Deciphering the mechanisms of permanent forearc deformation based on marine terraces}, doi = {10.25932/publishup-61035}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610359}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 153}, year = {2023}, abstract = {The Andes reflect Cenozoic deformation and uplift along the South American margin in the context of regional shortening associated with the interaction between the subducting Nazca plate and the overriding continental South American plate. Simultaneously, multiple levels of uplifted marine terraces constitute laterally continuous geomorphic features related to the accumulation of permanent forearc deformation in the coastal realm. However, the mechanisms responsible for permanent coastal uplift and the persistency of current/decadal deformation patterns over millennial timescales are still not fully understood. This dissertation presents a continental-scale database of last interglacial terrace elevations and uplift rates along the South American coast that provides the basis for an analysis of a variety of mechanisms that are possibly responsible for the accumulation of permanent coastal uplift. Regional-scale mapping and analysis of multiple, late Pleistocene terrace levels in central Chile furthermore provide valuable insights regarding the persistency of current seismic asperities, the role of upper-plate faulting, and the impact of bathymetric ridges on permanent forearc deformation. The database of last interglacial terrace elevations reveals an almost continuous signal of background-uplift rates along the South American coast at ~0.22 mm/yr that is modified by various short- to long-wavelength changes. Spatial correlations with crustal faults and subducted bathymetric ridges suggest long-term deformation to be affected by these features, while the latitudinal variability of climate forcing factors has a profound impact on the generation and preservation of marine terraces. Systematic wavelength analyses and comparisons of the terrace-uplift rate signal with different tectonic parameters reveal short-wavelength deformation to result from crustal faulting, while intermediate- to long-wavelength deformation might indicate various extents of long-term seismotectonic segments on the megathrust, which are at least partially controlled by the subduction of bathymetric anomalies. The observed signal of background-uplift rate is likely accumulated by moderate earthquakes near the Moho, suggesting multiple, spatiotemporally distinct phases of uplift that manifest as a continuous uplift signal over millennial timescales. Various levels of late Pleistocene marine terraces in the 2015 M8.3 Illapel-earthquake area reveal a range of uplift rates between 0.1 and 0.6 mm/yr and indicate decreasing uplift rates since ~400 ka. These glacial-cycle uplift rates do not correlate with current or decadal estimates of coastal deformation suggesting seismic asperities not to be persistent features on the megathrust that control the accumulation of permanent forearc deformation over long timescales of 105 years. Trench-parallel, crustal normal faults modulate the characteristics of permanent forearc-deformation; upper-plate extension likely represents a second-order phenomenon resulting from subduction erosion and subsequent underplating that lead to regional tectonic uplift and local gravitational collapse of the forearc. In addition, variable activity with respect to the subduction of the Juan Fern{\´a}ndez Ridge can be detected in the upper plate over the course of multiple interglacial periods, emphasizing the role of bathymetric anomalies in causing local increases in terrace-uplift rate. This thesis therefore provides new insights into the current understanding of subduction-zone processes and the dynamics of coastal forearc deformation, whose different interacting forcing factors impact the topographic and geomorphic evolution of the western South American coast.}, language = {en} } @article{BhattacharyyaBalischewskiSperlichetal.2023, author = {Bhattacharyya, Biswajit and Balischewski, Christian and Sperlich, Eric and G{\"u}nter, Christina and Mies, Stefan and Kelling, Alexandra and Taubert, Andreas}, title = {N-Butyl Pyridinium Diiodido Argentate(I)}, series = {Advanced materials interfaces}, volume = {10}, journal = {Advanced materials interfaces}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202202363}, pages = {7}, year = {2023}, abstract = {A new solid-state material, N-butyl pyridinium diiodido argentate(I), is synthesized using a simple and effective one-pot approach. In the solid state, the compound exhibits 1D ([AgI2](-))(n) chains that are stabilized by the N-butyl pyridinium cation. The 1D structure is further manifested by the formation of long, needle-like crystals, as revealed from electron microscopy. As the general composition is derived from metal halide-based ionic liquids, the compound has a low melting point of 100-101 degrees C, as confirmed by differential scanning calorimetry. Most importantly, the compound has a conductivity of 10(-6) S cm(-1) at room temperature. At higher temperatures the conductivity increases and reaches to 10(-4 )S cm(-1) at 70 degrees C. In contrast to AgI, however, the current material has a highly anisotropic 1D arrangement of the ionic domains. This provides direct and tuneable access to fast and anisotropic ionic conduction. The material is thus a significant step forward beyond current ion conductors and a highly promising prototype for the rational design of highly conductive ionic solid-state conductors for battery or solar cell applications.}, language = {en} } @phdthesis{Metz2023, author = {Metz, Malte}, title = {Finite fault earthquake source inversions}, doi = {10.25932/publishup-61974}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-619745}, school = {Universit{\"a}t Potsdam}, pages = {143}, year = {2023}, abstract = {Earthquake modeling is the key to a profound understanding of a rupture. Its kinematics or dynamics are derived from advanced rupture models that allow, for example, to reconstruct the direction and velocity of the rupture front or the evolving slip distribution behind the rupture front. Such models are often parameterized by a lattice of interacting sub-faults with many degrees of freedom, where, for example, the time history of the slip and rake on each sub-fault are inverted. To avoid overfitting or other numerical instabilities during a finite-fault estimation, most models are stabilized by geometric rather than physical constraints such as smoothing. As a basis for the inversion approach of this study, we build on a new pseudo-dynamic rupture model (PDR) with only a few free parameters and a simple geometry as a physics-based solution of an earthquake rupture. The PDR derives the instantaneous slip from a given stress drop on the fault plane, with boundary conditions on the developing crack surface guaranteed at all times via a boundary element approach. As a side product, the source time function on each point on the rupture plane is not constraint and develops by itself without additional parametrization. The code was made publicly available as part of the Pyrocko and Grond Python packages. The approach was compared with conventional modeling for different earthquakes. For example, for the Mw 7.1 2016 Kumamoto, Japan, earthquake, the effects of geometric changes in the rupture surface on the slip and slip rate distributions could be reproduced by simply projecting stress vectors. For the Mw 7.5 2018 Palu, Indonesia, strike-slip earthquake, we also modelled rupture propagation using the 2D Eikonal equation and assuming a linear relationship between rupture and shear wave velocity. This allowed us to give a deeper and faster propagating rupture front and the resulting upward refraction as a new possible explanation for the apparent supershear observed at the Earth's surface. The thesis investigates three aspects of earthquake inversion using PDR: (1) to test whether implementing a simplified rupture model with few parameters into a probabilistic Bayesian scheme without constraining geometric parameters is feasible, and whether this leads to fast and robust results that can be used for subsequent fast information systems (e.g., ground motion predictions). (2) To investigate whether combining broadband and strong-motion seismic records together with near-field ground deformation data improves the reliability of estimated rupture models in a Bayesian inversion. (3) To investigate whether a complex rupture can be represented by the inversion of multiple PDR sources and for what type of earthquakes this is recommended. I developed the PDR inversion approach and applied the joint data inversions to two seismic sequences in different tectonic settings. Using multiple frequency bands and a multiple source inversion approach, I captured the multi-modal behaviour of the Mw 8.2 2021 South Sandwich subduction earthquake with a large, curved and slow rupturing shallow earthquake bounded by two faster and deeper smaller events. I could cross-validate the results with other methods, i.e., P-wave energy back-projection, a clustering analysis of aftershocks and a simple tsunami forward model. The joint analysis of ground deformation and seismic data within a multiple source inversion also shed light on an earthquake triplet, which occurred in July 2022 in SE Iran. From the inversion and aftershock relocalization, I found indications for a vertical separation between the shallower mainshocks within the sedimentary cover and deeper aftershocks at the sediment-basement interface. The vertical offset could be caused by the ductile response of the evident salt layer to stress perturbations from the mainshocks. The applications highlight the versatility of the simple PDR in probabilistic seismic source inversion capturing features of rather different, complex earthquakes. Limitations, as the evident focus on the major slip patches of the rupture are discussed as well as differences to other finite fault modeling methods.}, language = {en} } @phdthesis{Mantiloni2023, author = {Mantiloni, Lorenzo}, title = {Modeling stress and dike pathways in calerdas}, doi = {10.25932/publishup-61262}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-612621}, school = {Universit{\"a}t Potsdam}, pages = {xii, 145}, year = {2023}, abstract = {Volcanic hazard assessment relies on physics-based models of hazards, such as lava flows and pyroclastic density currents, whose outcomes are very sensitive to the location where future eruptions will occur. On the contrary, forecast of vent opening locations in volcanic areas typically relies on purely data-driven approaches, where the spatial density of past eruptive vents informs the probability maps of future vent opening. Such techniques may be suboptimal in volcanic systems with missing or scarce data, and where the controls on magma pathways may change over time. An alternative approach was recently proposed, relying on a model of stress-driven pathways of magmatic dikes. In that approach, the crustal stress was optimized so that dike trajectories linked consistently the location of the magma chamber to that of past vents. The retrieved information on the stress state was then used to forecast future dike trajectories. The validation of such an approach requires extensive application to nature. Before doing so, however, several important limitations need to be removed, most importantly the two-dimensional (2D) character of the models and theoretical concepts. In this thesis, I develop methods and tools so that a physics-based strategy of stress inversion and eruptive vent forecast in volcanoes can be applied to three dimensional (3D) problems. In the first part, I test the stress inversion and vent forecast strategy on analog models, still within a 2D framework, but improving on the efficiency of the stress optimization. In the second part, I discuss how to correctly account for gravitational loading/unloading due to complex 3D topography with a Boundary-Element numerical model. Then, I develop a new, simplified but fast model of dike pathways in 3D, designed for running large numbers of simulations at minimal computational cost, and able to backtrack dike trajectories from vents on the surface. Finally, I combine the stress and dike models to simulate dike pathways in synthetic calderas. In the third part, I describe a framework of stress inversion and vent forecast strategy in 3D for calderas. The stress inversion relies on, first, describing the magma storage below a caldera in terms of a probability density function. Next, dike trajectories are backtracked from the known locations of past vents down through the crust, and the optimization algorithm seeks for the stress models which lead trajectories through the regions of highest probability. I apply the new strategy to the synthetic scenarios presented in the second part, and I exploit the results from the stress inversions to produce probability maps of future vent locations for some of those scenarios. In the fourth part, I present the inversion of different deformation source models applied to the ongoing ground deformation observed across the Rhenish Massif in Central Europe. The region includes the Eifel Volcanic Fields in Germany, a potential application case for the vent forecast strategy. The results show how the observed deformation may be due to melt accumulation in sub-horizontal structures in the lower crust or upper mantle. The thesis concludes with a discussion of the stress inversion and vent forecast strategy, its limitations and applicability to real volcanoes. Potential developments of the modeling tools and concepts presented here are also discussed, as well as possible applications to other geophysical problems.}, language = {en} } @phdthesis{Illien2023, author = {Illien, Luc}, title = {Time-dependent properties of the shallow subsurface}, doi = {10.25932/publishup-59936}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599367}, school = {Universit{\"a}t Potsdam}, pages = {xviii, 133}, year = {2023}, abstract = {The shallow Earth's layers are at the interplay of many physical processes: some being driven by atmospheric forcing (precipitation, temperature...) whereas others take their origins at depth, for instance ground shaking due to seismic activity. These forcings cause the subsurface to continuously change its mechanical properties, therefore modulating the strength of the surface geomaterials and hydrological fluxes. Because our societies settle and rely on the layers hosting these time-dependent properties, constraining the hydro-mechanical dynamics of the shallow subsurface is crucial for our future geographical development. One way to investigate the ever-changing physical changes occurring under our feet is through the inference of seismic velocity changes from ambient noise, a technique called seismic interferometry. In this dissertation, I use this method to monitor the evolution of groundwater storage and damage induced by earthquakes. Two research lines are investigated that comprise the key controls of groundwater recharge in steep landscapes and the predictability and duration of the transient physical properties due to earthquake ground shaking. These two types of dynamics modulate each other and influence the velocity changes in ways that are challenging to disentangle. A part of my doctoral research also addresses this interaction. Seismic data from a range of field settings spanning several climatic conditions (wet to arid climate) in various seismic-prone areas are considered. I constrain the obtained seismic velocity time-series using simple physical models, independent dataset, geophysical tools and nonlinear analysis. Additionally, a methodological development is proposed to improve the time-resolution of passive seismic monitoring.}, language = {en} } @article{KrassakisKaraviasZygourietal.2023, author = {Krassakis, Pavlos and Karavias, Andreas and Zygouri, Evangelia and Roumpos, Christos and Louloudis, Georgios and Pyrgaki, Konstantina and Koukouzas, Nikolaos and Kempka, Thomas and Karapanos, Dimitris}, title = {GIS-based assessment of hybrid pumped hydro storage as a potential solution for the clean energy transition}, series = {Sensors}, volume = {23}, journal = {Sensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s23020593}, pages = {24}, year = {2023}, abstract = {Planned decommissioning of coal-fired plants in Europe requires innovative technical and economic strategies to support coal regions on their path towards a climate-resilient future. The repurposing of open pit mines into hybrid pumped hydro power storage (HPHS) of excess energy from the electric grid, and renewable sources will contribute to the EU Green Deal, increase the economic value, stabilize the regional job market and contribute to the EU energy supply security. This study aims to present a preliminary phase of a geospatial workflow used to evaluate land suitability by implementing a multi-criteria decision making (MCDM) technique with an advanced geographic information system (GIS) in the context of an interdisciplinary feasibility study on HPHS in the Kardia lignite open pit mine (Western Macedonia, Greece). The introduced geospatial analysis is based on the utilization of the constraints and ranking criteria within the boundaries of the abandoned mine regarding specific topographic and proximity criteria. The applied criteria were selected from the literature, while for their weights, the experts' judgement was introduced by implementing the analytic hierarchy process (AHP), in the framework of the ATLANTIS research program. According to the results, seven regions were recognized as suitable, with a potential energy storage capacity from 1.09 to 5.16 GWh. Particularly, the present study's results reveal that 9.27\% (212,884 m(2)) of the area had a very low suitability, 15.83\% (363,599 m(2)) had a low suitability, 23.99\% (550,998 m(2)) had a moderate suitability, 24.99\% (573,813 m(2)) had a high suitability, and 25.92\% (595,125 m(2)) had a very high suitability for the construction of the upper reservoir. The proposed semi-automatic geospatial workflow introduces an innovative tool that can be applied to open pit mines globally to identify the optimum design for an HPHS system depending on the existing lower reservoir.}, language = {en} } @phdthesis{GomezZapata2023, author = {G{\´o}mez Zapata, Juan Camilo}, title = {Towards unifying approaches in exposure modelling for scenario-based multi-hazard risk assessments}, doi = {10.25932/publishup-58614}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586140}, school = {Universit{\"a}t Potsdam}, pages = {iii, xiii, 155}, year = {2023}, abstract = {This cumulative thesis presents a stepwise investigation of the exposure modelling process for risk assessment due to natural hazards while highlighting its, to date, not much-discussed importance and associated uncertainties. Although "exposure" refers to a very broad concept of everything (and everyone) that is susceptible to damage, in this thesis it is narrowed down to the modelling of large-area residential building stocks. Classical building exposure models for risk applications have been constructed fully relying on unverified expert elicitation over data sources (e.g., outdated census datasets), and hence have been implicitly assumed to be static in time and in space. Moreover, their spatial representation has also typically been simplified by geographically aggregating the inferred composition onto coarse administrative units whose boundaries do not always capture the spatial variability of the hazard intensities required for accurate risk assessments. These two shortcomings and the related epistemic uncertainties embedded within exposure models are tackled in the first three chapters of the thesis. The exposure composition of large-area residential building stocks is studied on the scope of scenario-based earthquake loss models. Then, the proposal of optimal spatial aggregation areas of exposure models for various hazard-related vulnerabilities is presented, focusing on ground-shaking and tsunami risks. Subsequently, once the experience is gained in the study of the composition and spatial aggregation of exposure for various hazards, this thesis moves towards a multi-hazard context while addressing cumulative damage and losses due to consecutive hazard scenarios. This is achieved by proposing a novel method to account for the pre-existing damage descriptions on building portfolios as a key input to account for scenario-based multi-risk assessment. Finally, this thesis shows how the integration of the aforementioned elements can be used in risk communication practices. This is done through a modular architecture based on the exploration of quantitative risk scenarios that are contrasted with social risk perceptions of the directly exposed communities to natural hazards. In Chapter 1, a Bayesian approach is proposed to update the prior assumptions on such composition (i.e., proportions per building typology). This is achieved by integrating high-quality real observations and then capturing the intrinsic probabilistic nature of the exposure model. Such observations are accounted as real evidence from both: field inspections (Chapter 2) and freely available data sources to update existing (but outdated) exposure models (Chapter 3). In these two chapters, earthquake scenarios with parametrised ground motion fields were transversally used to investigate the role of such epistemic uncertainties related to the exposure composition through sensitivity analyses. Parametrised scenarios of seismic ground shaking were the hazard input utilised to study the physical vulnerability of building portfolios. The second issue that was investigated, which refers to the spatial aggregation of building exposure models, was investigated within two decoupled vulnerability contexts: due to seismic ground shaking through the integration of remote sensing techniques (Chapter 3); and within a multi-hazard context by integrating the occurrence of associated tsunamis (Chapter 4). Therein, a careful selection of the spatial aggregation entities while pursuing computational efficiency and accuracy in the risk estimates due to such independent hazard scenarios (i.e., earthquake and tsunami) are discussed. Therefore, in this thesis, the physical vulnerability of large-area building portfolios due to tsunamis is considered through two main frames: considering and disregarding the interaction at the vulnerability level, through consecutive and decoupled hazard scenarios respectively, which were then contrasted. Contrary to Chapter 4, where no cumulative damages are addressed, in Chapter 5, data and approaches, which were already generated in former sections, are integrated with a novel modular method to ultimately study the likely interactions at the vulnerability level on building portfolios. This is tested by evaluating cumulative damages and losses after earthquakes with increasing magnitude followed by their respective tsunamis. Such a novel method is grounded on the possibility of re-using existing fragility models within a probabilistic framework. The same approach is followed in Chapter 6 to forecast the likely cumulative damages to be experienced by a building stock located in a volcanic multi-hazard setting (ash-fall and lahars). In that section, special focus was made on the manner the forecasted loss metrics are communicated to locally exposed communities. Co-existing quantitative scientific approaches (i.e., comprehensive exposure models; explorative risk scenarios involving single and multiple hazards) and semi-qualitative social risk perception (i.e., level of understanding that the exposed communities have about their own risk) were jointly considered. Such an integration ultimately allowed this thesis to also contribute to enhancing preparedness, science divulgation at the local level as well as technology transfer initiatives. Finally, a synthesis of this thesis along with some perspectives for improvement and future work are presented.}, language = {en} } @article{SharmaHainzlZoeller2023, author = {Sharma, Shubham and Hainzl, Sebastian and Z{\"o}ller, Gert}, title = {Seismicity parameters dependence on main shock-induced co-seismic stress}, series = {Geophysical journal international}, volume = {235}, journal = {Geophysical journal international}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggad201}, pages = {509 -- 517}, year = {2023}, abstract = {The Gutenberg-Richter (GR) and the Omori-Utsu (OU) law describe the earthquakes' energy release and temporal clustering and are thus of great importance for seismic hazard assessment. Motivated by experimental results, which indicate stress-dependent parameters, we consider a combined global data set of 127 main shock-aftershock sequences and perform a systematic study of the relationship between main shock-induced stress changes and associated seismicity patterns. For this purpose, we calculate space-dependent Coulomb Stress (\& UDelta;CFS) and alternative receiver-independent stress metrics in the surrounding of the main shocks. Our results indicate a clear positive correlation between the GR b-value and the induced stress, contrasting expectations from laboratory experiments and suggesting a crucial role of structural heterogeneity and strength variations. Furthermore, we demonstrate that the aftershock productivity increases nonlinearly with stress, while the OU parameters c and p systematically decrease for increasing stress changes. Our partly unexpected findings can have an important impact on future estimations of the aftershock hazard.}, language = {en} } @phdthesis{Zali2023, author = {Zali, Zahra}, title = {Volcanic tremor analysis based on advanced signal processing concepts including music information retrieval (MIR) strategies}, doi = {10.25932/publishup-61086}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610866}, school = {Universit{\"a}t Potsdam}, pages = {viii, 95}, year = {2023}, abstract = {Volcanoes are one of the Earth's most dynamic zones and responsible for many changes in our planet. Volcano seismology aims to provide an understanding of the physical processes in volcanic systems and anticipate the style and timing of eruptions by analyzing the seismic records. Volcanic tremor signals are usually observed in the seismic records before or during volcanic eruptions. Their analysis contributes to evaluate the evolving volcanic activity and potentially predict eruptions. Years of continuous seismic monitoring now provide useful information for operational eruption forecasting. The continuously growing amount of seismic recordings, however, poses a challenge for analysis, information extraction, and interpretation, to support timely decision making during volcanic crises. Furthermore, the complexity of eruption processes and precursory activities makes the analysis challenging. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contribute to improving our understanding of the underlying physical processes. Some similar issues (data reduction, source separation, extraction, and classification) are addressed in the context of music information retrieval (MIR). The signal characteristics of acoustic and seismic recordings comprise a number of similarities. This thesis is going beyond classical signal analysis techniques usually employed in seismology by exploiting similarities of seismic and acoustic signals and building the information retrieval strategy on the expertise developed in the field of MIR. First, inspired by the idea of harmonic-percussive separation (HPS) in musical signal processing, I have developed a method to extract harmonic volcanic tremor signals and to detect transient events from seismic recordings. This provides a clean tremor signal suitable for tremor investigation along with a characteristic function suitable for earthquake detection. Second, using HPS algorithms, I have developed a noise reduction technique for seismic signals. This method is especially useful for denoising ocean bottom seismometers, which are highly contaminated by noise. The advantage of this method compared to other denoising techniques is that it doesn't introduce distortion to the broadband earthquake waveforms, which makes it reliable for different applications in passive seismological analysis. Third, to address the challenge of extracting information from high-dimensional data and investigating the complex eruptive phases, I have developed an advanced machine learning model that results in a comprehensive signal processing scheme for volcanic tremors. Using this method seismic signatures of major eruptive phases can be automatically detected. This helps to provide a chronology of the volcanic system. Also, this model is capable to detect weak precursory volcanic tremors prior to the eruption, which could be used as an indicator of imminent eruptive activity. The extracted patterns of seismicity and their temporal variations finally provide an explanation for the transition mechanism between eruptive phases.}, language = {en} } @article{SchmidtFranckeGrosseetal.2023, author = {Schmidt, Lena Katharina and Francke, Till and Grosse, Peter Martin and Mayer, Christoph and Bronstert, Axel}, title = {Reconstructing five decades of sediment export from two glacierized high-alpine catchments in Tyrol, Austria, using nonparametric regression}, series = {Hydrology and earth system sciences : HESS}, volume = {27}, journal = {Hydrology and earth system sciences : HESS}, number = {9}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-27-1841-2023}, pages = {1841 -- 1863}, year = {2023}, abstract = {Knowledge on the response of sediment export to recent climate change in glacierized areas in the European Alps is limited, primarily because long-term records of suspended sediment concentrations (SSCs) are scarce. Here we tested the estimation of sediment export of the past five decades using quantile regression forest (QRF), a nonparametric, multivariate regression based on random forest. The regression builds on short-term records of SSCs and long records of the most important hydroclimatic drivers (discharge, precipitation and air temperature - QPT). We trained independent models for two nested and partially glacier-covered catchments, Vent (98 km(2)) and Vernagt (11.4 km(2)), in the upper otztal in Tyrol, Austria (1891 to 3772 m a.s.l.), where available QPT records start in 1967 and 1975. To assess temporal extrapolation ability, we used two 2-year SSC datasets at gauge Vernagt, which are almost 20 years apart, for a validation. For Vent, we performed a five-fold cross-validation on the 15 years of SSC measurements. Further, we quantified the number of days where predictors exceeded the range represented in the training dataset, as the inability to extrapolate beyond this range is a known limitation of QRF. Finally, we compared QRF performance to sediment rating curves (SRCs). We analyzed the modeled sediment export time series, the predictors and glacier mass balance data for trends (Mann-Kendall test and Sen's slope estimator) and step-like changes (using the widely applied Pettitt test and a complementary Bayesian approach).Our validation at gauge Vernagt demonstrated that QRF performs well in estimating past daily sediment export (Nash-Sutcliffe efficiency (NSE) of 0.73) and satisfactorily for SSCs (NSE of 0.51), despite the small training dataset. The temporal extrapolation ability of QRF was superior to SRCs, especially in periods with high-SSC events, which demonstrated the ability of QRF to model threshold effects. Days with high SSCs tended to be underestimated, but the effect on annual yields was small. Days with predictor exceedances were rare, indicating a good representativity of the training dataset. Finally, the QRF reconstruction models outperformed SRCs by about 20 percent points of the explained variance.Significant positive trends in the reconstructed annual suspended sediment yields were found at both gauges, with distinct step-like increases around 1981. This was linked to increased glacier melt, which became apparent through step-like increases in discharge at both gauges as well as change points in mass balances of the two largest glaciers in the Vent catchment. We identified exceptionally high July temperatures in 1982 and 1983 as a likely cause. In contrast, we did not find coinciding change points in precipitation. Opposing trends at the two gauges after 1981 suggest different timings of "peak sediment". We conclude that, given large-enough training datasets, the presented QRF approach is a promising tool with the ability to deepen our understanding of the response of high-alpine areas to decadal climate change.}, language = {en} } @article{TimmermanKrmicekKrmičkovaetal.2023, author = {Timmerman, Martin Jan and Krmicek, Lukas and Krm{\´i}čkov{\´a}, Simona and Slama, Jiri and Sudo, Masafumi and Sobel, Edward}, title = {Tonian-Ediacaran evolution of the Brunovistulian microcontinent (Czech Republic) deciphered from LA-ICP-MS U-Pb zircon and 40Ar/39Ar muscovite ages}, series = {Precambrian research}, volume = {387}, journal = {Precambrian research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2023.106981}, pages = {20}, year = {2023}, abstract = {Granitoids of the Slavkov Domain of the Brunovistulian microcontinent (BVM) in the Czech Republic have Ediacaran U-Pb zircon crystallization ages with the dominant magmatic activity occurring between ca. 597 and 595 Ma. The ages overlap published ages for the adjacent Thaya Domain, showing that both domains formed coevally in the same subduction setting. The data support published models in which the Slavkov Domain formed as arc crust. The main stage of magmatism stopped after ca. 595-590 Ma and was quickly followed by cooling accompanied by intrusion of small volumes of rhyolite dykes at ca. 594 Ma. Slavkov Domain metasedimentary rocks are dominated by Cryogenian-Ediacaran detrital zircon populations and their protoliths were locally derived erosional products of Cryogenian to Ediacaran arc rocks of the Thaya and Slavkov domains. Metasedi-mentary rocks from the NE part of the BVM contain younger, ca. 550 Ma zircons indicating that the BVM grew northeastward by accretion of progressively younger material derived from magmatic rocks with latest Ediacaran crystallization ages. In contrast to the Thaya and Slavkov domains, the Metavolcanic Zone that lies between them formed between ca. 740 and 725 Ma in the late Tonian to early Cryogenian. It predates the main stage magmatic activity in the BVM by 135 to 150 Ma and is probably a relic of older crust that formed during rifting of the Rodinia supercontinent. At ca. 552-551 Ma in the latest Ediacaran, parts of the BVM were exposed at the surface, during which time red, terrestrial siliciclastic sediments (Basal Clastics) were deposited. These largely had (very) proximal sources such as the main stage granitoids of the Thaya and Slavkov domains. Clasts of (meta)sandstones contain much older zircon populations and provide evidence that Neoarchaean and Palaeo-, meso- and early Neoproterozoic crustal rocks were exposed in erosional position nearby.}, language = {en} } @article{StoltnowWeisKorges2023, author = {Stoltnow, Malte and Weis, Philipp and Korges, Maximilian}, title = {Hydrological controls on base metal precipitation and zoning at the porphyry-epithermal transition constrained by numerical modeling}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-30572-5}, pages = {15}, year = {2023}, abstract = {Ore precipitation in porphyry copper systems is generally characterized by metal zoning (Cu-Mo to Zn-Pb-Ag), which is suggested to be variably related to solubility decreases during fluid cooling, fluid-rock interactions, partitioning during fluid phase separation and mixing with external fluids. Here, we present new advances of a numerical process model by considering published constraints on the temperature- and salinity-dependent solubility of Cu, Pb and Zn in the ore fluid. We quantitatively investigate the roles of vapor-brine separation, halite saturation, initial metal contents, fluid mixing and remobilization as first-order controls of the physical hydrology on ore formation. The results show that the magmatic vapor and brine phases ascend with different residence times but as miscible fluid mixtures, with salinity increases generating metal-undersaturated bulk fluids. The release rates of magmatic fluids affect the location of the thermohaline fronts, leading to contrasting mechanisms for ore precipitation: higher rates result in halite saturation without significant metal zoning, lower rates produce zoned ore shells due to mixing with meteoric water. Varying metal contents can affect the order of the final metal precipitation sequence. Redissolution of precipitated metals results in zoned ore shell patterns in more peripheral locations and also decouples halite saturation from ore precipitation.}, language = {en} } @article{KloseGuillemoteauVignolietal.2023, author = {Klose, Tim and Guillemoteau, Julien and Vignoli, Giulio and Walter, Judith and Herrmann, Andreas and Tronicke, Jens}, title = {Structurally constrained inversion by means of a Minimum Gradient Support regularizer}, series = {Geophysical journal international}, volume = {233}, journal = {Geophysical journal international}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggad041}, pages = {1938 -- 1949}, year = {2023}, abstract = {Many geophysical inverse problems are known to be ill-posed and, thus, requiring some kind of regularization in order to provide a unique and stable solution. A possible approach to overcome the inversion ill-posedness consists in constraining the position of the model interfaces. For a grid-based parameterization, such a structurally constrained inversion can be implemented by adopting the usual smooth regularization scheme in which the local weight of the regularization is reduced where an interface is expected. By doing so, sharp contrasts are promoted at interface locations while standard smoothness constraints keep affecting the other regions of the model. In this work, we present a structurally constrained approach and test it on the inversion of frequency-domain electromagnetic induction (FD-EMI) data using a regularization approach based on the Minimum Gradient Support stabilizer, which is capable to promote sharp transitions everywhere in the model, i.e., also in areas where no structural a prioriinformation is available. Using 1D and 2D synthetic data examples, we compare the proposed approach to a structurally constrained smooth inversion as well as to more standard (i.e., not structurally constrained) smooth and sharp inversions. Our results demonstrate that the proposed approach helps in finding a better and more reliable reconstruction of the subsurface electrical conductivity distribution, including its structural characteristics. Furthermore, we demonstrate that it allows to promote sharp parameter variations in areas where no structural information are available. Lastly, we apply our structurally constrained scheme to FD-EMI field data collected at a field site in Eastern Germany to image the thickness of peat deposits along two selected profiles. In this field example, we use collocated constant offset ground-penetrating radar (GPR) data to derive structural a priori information to constrain the inversion of the FD-EMI data. The results of this case study demonstrate the effectiveness and flexibility of the proposed approach.}, language = {en} } @phdthesis{ArboledaZapata2023, author = {Arboleda Zapata, Mauricio}, title = {Adapted inversion strategies for electrical resistivity data to explore layered near-surface environments}, doi = {10.25932/publishup-58135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-581357}, school = {Universit{\"a}t Potsdam}, pages = {115}, year = {2023}, abstract = {The electrical resistivity tomography (ERT) method is widely used to investigate geological, geotechnical, and hydrogeological problems in inland and aquatic environments (i.e., lakes, rivers, and seas). The objective of the ERT method is to obtain reliable resistivity models of the subsurface that can be interpreted in terms of the subsurface structure and petrophysical properties. The reliability of the resulting resistivity models depends not only on the quality of the acquired data, but also on the employed inversion strategy. Inversion of ERT data results in multiple solutions that explain the measured data equally well. Typical inversion approaches rely on different deterministic (local) strategies that consider different smoothing and damping strategies to stabilize the inversion. However, such strategies suffer from the trade-off of smearing possible sharp subsurface interfaces separating layers with resistivity contrasts of up to several orders of magnitude. When prior information (e.g., from outcrops, boreholes, or other geophysical surveys) suggests sharp resistivity variations, it might be advantageous to adapt the parameterization and inversion strategies to obtain more stable and geologically reliable model solutions. Adaptations to traditional local inversions, for example, by using different structural and/or geostatistical constraints, may help to retrieve sharper model solutions. In addition, layer-based model parameterization in combination with local or global inversion approaches can be used to obtain models with sharp boundaries. In this thesis, I study three typical layered near-surface environments in which prior information is used to adapt 2D inversion strategies to favor layered model solutions. In cooperation with the coauthors of Chapters 2-4, I consider two general strategies. Our first approach uses a layer-based model parameterization and a well-established global inversion strategy to generate ensembles of model solutions and assess uncertainties related to the non-uniqueness of the inverse problem. We apply this method to invert ERT data sets collected in an inland coastal area of northern France (Chapter~2) and offshore of two Arctic regions (Chapter~3). Our second approach consists of using geostatistical regularizations with different correlation lengths. We apply this strategy to a more complex subsurface scenario on a local intermountain alluvial fan in southwestern Germany (Chapter~4). Overall, our inversion approaches allow us to obtain resistivity models that agree with the general geological understanding of the studied field sites. These strategies are rather general and can be applied to various geological environments where a layered subsurface structure is expected. The flexibility of our strategies allows adaptations to invert other kinds of geophysical data sets such as seismic refraction or electromagnetic induction methods, and could be considered for joint inversion approaches.}, language = {en} } @article{BereswillGatzMillerSuetal.2023, author = {Bereswill, Sarah and Gatz-Miller, Hannah and Su, Danyang and T{\"o}tzke, Christian and Kardjilov, Nikolay and Oswald, Sascha and Mayer, Klaus Ulrich}, title = {Coupling non-invasive imaging and reactive transport modeling to investigate water and oxygen dynamics in the root zone}, series = {Vadose zone journal}, volume = {22}, journal = {Vadose zone journal}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {1539-1663}, doi = {10.1002/vzj2.20268}, pages = {19}, year = {2023}, abstract = {Oxygen (O-2) availability in soils is vital for plant growth and productivity. The transport and consumption of O-2 in the root zone is closely linked to soil moisture content, the spatial distribution of roots, as well as structure and heterogeneity of the surrounding soil. In this study, we measure three-dimensional root system architecture and the spatiotemporal dynamics of soil moisture (\& theta;) and O-2 concentrations in the root zone of maize (Zea mays) via non-invasive imaging, and then construct and parameterize a reactive transport model based on the experimental data. The combination of three non-invasive imaging methods allowed for a direct comparison of simulation results with observations at high spatial and temporal resolution. In three different modeling scenarios, we investigated how the results obtained for different levels of conceptual complexity in the model were able to match measured \& theta; and O-2 concentration patterns. We found that the modeling scenario that considers heterogeneous soil structure and spatial variability of hydraulic parameters (permeability, porosity, and van Genuchten \& alpha; and n), better reproduced the measured \& theta; and O-2 patterns relative to a simple model with a homogenous soil domain. The results from our combined imaging and modeling analysis reveal that experimental O-2 and water dynamics can be reproduced quantitatively in a reactive transport model, and that O-2 and water dynamics are best characterized when conditions unique to the specific system beyond the distribution of roots, such as soil structure and its effect on water saturation and macroscopic gas transport pathways, are considered.}, language = {en} }